scholarly journals Two Ras Pathways in Fission Yeast Are Differentially Regulated by Two Ras Guanine Nucleotide Exchange Factors

2002 ◽  
Vol 22 (13) ◽  
pp. 4598-4606 ◽  
Author(s):  
Piyi Papadaki ◽  
Véronique Pizon ◽  
Brian Onken ◽  
Eric C. Chang

ABSTRACT How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6Δ) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1Δ and scd1Δ, efc25Δ is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.

2002 ◽  
Vol 22 (12) ◽  
pp. 4073-4085 ◽  
Author(s):  
Rachel J. Buchsbaum ◽  
Beth A. Connolly ◽  
Larry A. Feig

ABSTRACT Tiam1 and Ras-GRF1 are guanine nucleotide exchange factors (GEFs) that activate the Rac GTPase. The two GEFs have similar N-terminal regions containing pleckstrin homology domains followed by coiled-coils and additional sequences that function together to allow regulated GEF activity. Here we show that this N-terminal region of both proteins binds to the scaffold protein IB2/JIP2. IB2/JIP2 is a scaffold for the p38 mitogen-activated protein (MAP) kinase cascade because it binds to the Rac target MLK3, the MAP kinase kinase MKK3, and the p38 MAP kinase. Expression of IB2/JIP2 in cells potentiates the ability of Tiam1 or Ras-GRF1 to activate the p38 MAP kinase cascade but not the Jnk MAP kinase cascade. In addition, Tiam1 or Ras-GRF1 binding to IB2/JIP2 increases the association of the components of the p38 MAP kinase signaling cassette with IB2/JIP2 in cells and activates scaffold-associated p38. These findings imply that Tiam1 and Ras-GRF1 can contribute to Rac signaling specificity by their ability to form a complex with a scaffold that binds components of one of the many known Rac effector pathways.


2008 ◽  
Vol 181 (7) ◽  
pp. 1073-1081 ◽  
Author(s):  
Nadia Vadaie ◽  
Heather Dionne ◽  
Darowan S. Akajagbor ◽  
Seth R. Nickerson ◽  
Damian J. Krysan ◽  
...  

Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.


2003 ◽  
Vol 23 (11) ◽  
pp. 3735-3752 ◽  
Author(s):  
Stephanie J. Moeller ◽  
Elizabeth D. Head ◽  
Robert J. Sheaff

ABSTRACT p27Kip1 (p27) is often inappropriately downregulated in aggressive human cancers. Although p27 can inhibit cyclin-dependent kinases (CDKs), low p27 does not always correlate with increased CDK activity. Furthermore, cells derived from p27−/− mice respond to antimitogens, maintain restriction point control, and do not deregulate CDKs. Thus, disruption of a p27 function other than CDK inhibition may contribute to the disease state. A yeast two-hybrid screen identified growth factor receptor-bound protein 2 (GRB2) as a p27 binding partner. We now demonstrate that p27 can inhibit GRB2 function by blocking its association with the guanine nucleotide exchange factor SOS. Endogenous p27 is rapidly exported from the nucleus to the cytoplasm in response to mitogen stimulation, where it binds GRB2 concomitant with a decrease in GRB2-associated SOS. As predicted, mitogen-stimulated p27−/− cells maintained their GRB2-SOS complexes for significantly longer. The Ras/mitogen-activated protein kinase pathway does not appear to be deregulated in cells lacking p27 despite excess GRB2-SOS, suggesting that additional control mechanisms are present. A transient-transfection approach was employed to show that p27 can inhibit Ras activation by targeting GRB2 and further revealed that the CDK and GRB2 inhibitory functions of p27 are separable and distinct. Thus, p27 downregulation may compromise control of Ras, one of the most common oncogenic events in human cancer.


Sign in / Sign up

Export Citation Format

Share Document