signaling specificity
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 29)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Christoph Klenk ◽  
Leif Hommers ◽  
Martin J. Lohse

Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to Gs and increased activation of Gq/11 compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3466
Author(s):  
Galia Maik-Rachline ◽  
Inbal Wortzel ◽  
Rony Seger

The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.


Plant Science ◽  
2021 ◽  
Vol 313 ◽  
pp. 111068
Author(s):  
I. Djeghdir ◽  
F. Chefdor ◽  
L. Bertheau ◽  
K. Koudounas ◽  
I. Carqueijeiro ◽  
...  
Keyword(s):  
Type B ◽  

Author(s):  
Gaoge Xu ◽  
Lichuan Zhou ◽  
Guoliang Qian ◽  
Fengquan Liu

Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. The large number of c-di-GMP-related diguanylate cyclases (DGCs), phosphodiesterases (PDEs) and effectors are responsible for the complexity and dynamics of c-di-GMP signaling. Some of these components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. Synthesis of the antibiotic HSAF ( H eat S table A ntifungal F actor) in Lysobacter enzymogenes is regulated by a specific c-di-GMP signaling pathway that includes a PDE LchP and a c-di-GMP effector Clp (also a transcriptional regulator). In the present study, from among 19 DGCs, we identified a diguanylate cyclase, LchD, which participates in this pathway. Subsequent investigation indicates that LchD and LchP physically interact and that the catalytic center of LchD is required for both the formation of the LchD-LchP complex and HSAF production. All the detected phenotypes support that LchD and LchP dispaly local c-di-GMP signaling to regulate HSAF biosynthesis. Although direct evidence is lacking, our investigation, which shows that the interaction between a DGC and a PDE maintains the specificity of c-di-GMP signaling, suggests the possibility of the existence of local c-di-GMP pools in bacteria. Importance Cyclic dimeric GMP (c-di-GMP) is a universal second messenger in bacteria. Signaling of c-di-GMP is complex and dynamic, and it is mediated by a large number of components, including c-di-GMP synthases (diguanylate cyclases. DGCs), c-di-GMP degrading enzymes (phosphodiesterases, PDEs), and c-di-GMP effectors. These components deploy various methods to avoid undesired crosstalk to maintain signaling specificity. In the present study, we identified a DGC that interacted with a PDE to specifically regulate antibiotic biosynthesis in L. enzymogenes . We provide direct evidence to show that the DGC and PDE form a complex, and also indirect evidence to argue that they may balance a local c-di-GMP pool to control the antibiotic production. The results represent an important finding regarding the mechanism of a pair of DGC and PDE to control the expression of specific c-di-GMP signaling pathways.


2021 ◽  
Author(s):  
Sofya Kuzmich ◽  
Patrick Blumenkamp ◽  
Doreen Meier ◽  
Alexander Goesmann ◽  
Anke Becker ◽  
...  

Myxococcus xanthus has a nutrient-regulated biphasic lifecycle forming predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. The second messenger c-di-GMP is essential during both stages of the lifecycle; however, different enzymes involved in c-di-GMP synthesis and degradation as well as several c-di-GMP receptors are important during distinct lifecycle stages. To address this stage specificity, we determined transcript levels using RNA-seq and transcription start sites using Cappable-seq during growth and development at a genome-wide scale. All 70 genes encoding c-di-GMP associated proteins were expressed, with 28 up-regulated and 10 down-regulated during development. In particular, the three genes encoding enzymatically active proteins with a stage-specific function were expressed stage-specifically. By combining operon mapping with published ChIP-seq data for MrpC (Robinson et al., 2014), the CRP-like master regulator of development, we identified nine developmentally regulated genes as regulated by MrpC. In particular, MrpC directly represses expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development and responsible for the c-di-GMP increase during development. Moreover, MrpC directly activates transcription of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3,3 cGAMP in vitro and is essential for development. Thereby, MrpC regulates and curbs the cellular pools of c-di-GMP and 3,3 cGAMP during development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity. MrpC is important for this regulation, thereby being a key regulator of developmental cyclic di-nucleotide metabolism in M. xanthus.


2021 ◽  
Author(s):  
Alexander S. Hauser ◽  
Charlotte Avet ◽  
Claire Normand ◽  
Arturo Mancini ◽  
Asuka Inoue ◽  
...  

AbstractTwo-thirds of human hormones and one-third of clinical drugs act on membrane receptors that couple to G proteins to achieve appropriate functional responses. While G protein transducers from literature are annotated in the Guide to Pharmacology database, two recent large-scale datasets now expand the receptor-G protein ‘couplome’. However, these three datasets differ in scope and reported G protein couplings giving different coverage and conclusions on GPCR-G protein signaling. Here, we report a meta-analysis unifying GPCR-G protein coupling, by standardized normalization and consensus support, into a common coupling map. This unravels novel consensus couplings for receptors supported by two independent sources and insights on coupling selectivity of GPCRs and classification of co-coupling G proteins. The coupling protocol, map and selectivity resources will promote advances in receptor research and cellular signaling towards the exploitation of G protein signaling specificity in design of safer drugs.


2021 ◽  
Vol 134 (14) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Kateryna Demydenko is first author on ‘ Ca2+ release via InsP3Rs enhances RyR recruitment during Ca2+ transients by increasing dyadic [Ca2+] in cardiomyocytes’, published in JCS. Kateryna is a PhD student in the lab of H. Llewelyn Roderick at KULeuven, Belgium. Her research aims to understand the role of Ca2+ signaling microdomains and how they differentially contribute to signaling specificity in regulating contractile and transcriptional responses in the cardiac myocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mariusz Matyszewski ◽  
Weili Zheng ◽  
Jacob Lueck ◽  
Zachary Mazanek ◽  
Naveen Mohideen ◽  
...  

AbstractInflammasomes are filamentous signaling platforms integral to innate immunity. Currently, little is known about how these structurally similar filaments recognize and distinguish one another. A cryo-EM structure of the AIM2PYD filament reveals that the architecture of the upstream filament is essentially identical to that of the adaptor ASCPYD filament. In silico simulations using Rosetta and molecular dynamics followed by biochemical and cellular experiments consistently demonstrate that individual filaments assemble bidirectionally. By contrast, the recognition between AIM2 and ASC requires at least one to be oligomeric and occurs in a head-to-tail manner. Using in silico mutagenesis as a guide, we also identify specific axial and lateral interfaces that dictate the recognition and distinction between AIM2 and ASC filaments. Together, the results here provide a robust framework for delineating the signaling specificity and order of inflammasomes.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Tyler Lefevre ◽  
Naincy Chandan ◽  
Alan Smrcka

Author(s):  
Li Guo ◽  
Yongsheng Li ◽  
Kara M Cirillo ◽  
Robert A Marick ◽  
Zhe Su ◽  
...  

Abstract MicroRNA (miRNA) is not a single sequence, but a series of multiple variants (also termed isomiRs) with sequence and expression heterogeneity. Whether and how these isoforms contribute to functional variation and complexity at the systems and network levels remain largely unknown. To explore this question systematically, we comprehensively analyzed the expression of small RNAs and their target sites to interrogate functional variations between novel isomiRs and their canonical miRNA sequences. Our analyses of the pan-cancer landscape of miRNA expression indicate that multiple isomiRs generated from the same miRNA locus often exhibit remarkable variation in their sequence, expression and function. We interrogated abundant and differentially expressed 5′ isomiRs with novel seed sequences via seed shifting and identified many potential novel targets of these 5′ isomiRs that would expand interaction capabilities between small RNAs and mRNAs, rewiring regulatory networks and increasing signaling circuit complexity. Further analyses revealed that some miRNA loci might generate diverse dominant isomiRs that often involved isomiRs with varied seeds and arm-switching, suggesting a selective advantage of multiple isomiRs in regulating gene expression. Finally, experimental validation indicated that isomiRs with shifted seed sequences could regulate novel target mRNAs and therefore contribute to regulatory network rewiring. Our analysis uncovers a widespread expansion of isomiR and mRNA interaction networks compared with those seen in canonical small RNA analysis; this expansion suggests global gene regulation network perturbations by alternative small RNA variants or isoforms. Taken together, the variations in isomiRs that occur during miRNA processing and maturation are likely to play a far more complex and plastic role in gene regulation than previously anticipated.


Sign in / Sign up

Export Citation Format

Share Document