scholarly journals Subnuclear Localization of Ku Protein: Functional Association with RNA Polymerase II Elongation Sites

2002 ◽  
Vol 22 (22) ◽  
pp. 8088-8099 ◽  
Author(s):  
Xianming Mo ◽  
William S. Dynan

ABSTRACT Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.

2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2020 ◽  
Vol 48 (11) ◽  
pp. 6068-6080 ◽  
Author(s):  
Nicolás Nieto Moreno ◽  
Florencia Villafañez ◽  
Luciana E Giono ◽  
Carmen Cuenca ◽  
Gastón Soria ◽  
...  

Abstract We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


2004 ◽  
Vol 24 (7) ◽  
pp. 2863-2874 ◽  
Author(s):  
Thomas C. Tubon ◽  
William P. Tansey ◽  
Winship Herr

ABSTRACT The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIBZR) and a carboxy-terminal core (TFIIBCORE). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIBZR that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIBZR surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIBZR domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters—pol II recruitment—has changed in sequence specificity during eukaryotic evolution.


2002 ◽  
Vol 22 (21) ◽  
pp. 7543-7552 ◽  
Author(s):  
Subhrangsu S. Mandal ◽  
Helen Cho ◽  
Sungjoon Kim ◽  
Kettly Cabane ◽  
Danny Reinberg

ABSTRACT FCP1, a phosphatase specific for the carboxy-terminal domain of RNA polymerase II (RNAP II), was found to stimulate transcript elongation by RNAP II in vitro and in vivo. This activity is independent of and distinct from the elongation-stimulatory activity associated with transcription factor IIF (TFIIF), and the elongation effects of TFIIF and FCP1 were found to be additive. Genetic experiments resulted in the isolation of several distinct fcp1 alleles. One of these alleles was found to suppress the slow-growth phenotype associated with either the reduction of intracellular nucleotide concentrations or the inhibition of other transcription elongation factors. Importantly, this allele of fcp1 was found to be lethal when combined individually with two mutations in the second-largest subunit of RNAP II, which had been shown previously to affect transcription elongation.


2019 ◽  
Author(s):  
Joshua E. Mayfield ◽  
Seema Irani ◽  
Edwin E. Escobar ◽  
Zhao Zhang ◽  
Nathanial T. Burkholder ◽  
...  

SummaryThe Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of RNA polymerase II’s C-terminal domain (CTD) and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes a reduction of phosphorylated Ser2 and accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


2009 ◽  
Vol 420 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Wen Tang ◽  
Wanhui You ◽  
Feng Shi ◽  
Tianyang Qi ◽  
Ling Wang ◽  
...  

Actin, the major component of the cytoplasmic skeleton, has been shown to exist in the nucleus. Nuclear actin functions in several steps of the transcription process, including chromatin remodelling and transcription initiation and elongation. However, as a part of PICs (pre-initiation complexes), the role of actin remains to be elucidated. In the present study, we identified RHA (RNA helicase A) as an actin-interacting protein in PICs. Using immunoprecipitation and immunofluorescence techniques, we have shown that RHA associates with β-actin in the nucleus. A GST (glutathione transferase) pulldown assay using different deletion mutants revealed that the RGG (Arg-Gly-Gly) region of RHA was responsible for the interaction with β-actin, and this dominant-negative mutant reduced the recruitment of Pol II (RNA polymerase II) into PICs. Moreover, overexpression or depletion of RHA could influence the interaction of Pol II with β-actin and β-actin-involved gene transcription regulation. These results suggest that RHA acts as a bridging factor linking nuclear β-actin with Pol II.


2006 ◽  
Vol 27 (3) ◽  
pp. 926-936 ◽  
Author(s):  
Mariela Reyes-Reyes ◽  
Michael Hampsey

ABSTRACT The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y1S2P3T4S5P6S7) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.


2001 ◽  
Vol 152 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Livio Pellizzoni ◽  
Bernard Charroux ◽  
Juri Rappsilber ◽  
Matthias Mann ◽  
Gideon Dreyfuss

The survival motor neuron (SMN) protein, the protein product of the spinal muscular atrophy (SMA) disease gene, plays a role in the assembly and regeneration of small nuclear ribonucleoproteins (snRNPs) and spliceosomes. By nanoelectrospray mass spectrometry, we identified RNA helicase A (RHA) as an SMN complex–associated protein. RHA is a DEAH box RNA helicase which binds RNA polymerase II (pol II) and reportedly functions in transcription. SMN interacts with RHA in vitro, and this interaction is impaired in mutant SMNs found in SMA patients. Coimmunoprecipitation demonstrated that the SMN complex is associated with pol II, snRNPs, and RHA in vivo. In vitro experiments suggest that RHA mediates the association of SMN with the COOH-terminal domain of pol II. Moreover, transfection of cells with a dominant negative mutant of SMN, SMNΔN27, causes accumulation of pol II, snRNPs, and RHA in nuclear structures that contain the known markers of gems and coiled bodies, and inhibits RNA pol I and pol II transcription in vivo. These findings indicate a functional as well as physical association of the SMN complex with pol II and suggest a role for the SMN complex in the assembly of the pol II transcription/processing machinery.


2004 ◽  
Vol 24 (9) ◽  
pp. 3983-3991 ◽  
Author(s):  
Bo-Shiun Chen ◽  
Michael Hampsey

ABSTRACT The general transcription factor TFIIB is required for accurate initiation, although the mechanism by which RNA polymerase II (RNAP II) identifies initiation sites is not well understood. Here we describe results from genetic and biochemical analyses of an altered form of yeast TFIIB containing an arginine-78 → cysteine (R78C) replacement in the “B-finger” domain. TFIIB R78C shifts start site selection downstream of normal and confers a cold-sensitive growth defect (Csm−). Suppression of the R78C Csm− phenotype identified a functional interaction between TFIIB and the Rpb2 subunit of RNAP II and defined a novel role for Rpb2 in start site selection. The rpb2 suppressor encodes a glycine-369 → serine (G369S) replacement, located in the “lobe” domain of Rpb2 and near the Rpb9 subunit, which was identified previously as an effector of start site selection. The Rpb2-Rpb9 “lobe-jaw” region of RNAP II is downstream of the catalytic center and distal to the site of RNAP II-TFIIB interaction. A TFIIB R78C mutant extract was defective for promoter-specific run-on transcription but yielded an altered pattern of abortive initiation products, indicating that the R78C defect does not preclude initiation. The sua7-3 rpb2-101 double mutant was sensitive to 6-azauracil in vivo and to nucleoside triphosphate substrate depletion in vitro. In the context of the recent X-ray structure of the yeast RNAP II-TFIIB complex, these results define a functional interaction between the B-finger domain of TFIIB and the distal lobe-jaw region of RNAP II and provide insight into the mechanism of start site selection.


Sign in / Sign up

Export Citation Format

Share Document