Hepatitis B virus encodes an RNA polymerase III transcript

1983 ◽  
Vol 3 (10) ◽  
pp. 1774-1782
Author(s):  
D N Standring ◽  
L B Rall ◽  
O Laub ◽  
W J Rutter

We demonstrated that cloned hepatitis B virus (HBV) DNA directs the synthesis of a 700-base RNA (HBV 700) by RNA polymerase III in a cell-free transcription system. HBV 700 is the only transcript known to originate from the viral short strand and has been mapped to the region between roughly 1,635 and 954 base pairs on the viral map, between the surface and core antigen coding sequences but overlapping and opposing the putative DNA polymerase and B protein genes. The in vitro initiation sites for the HBV 700 and core antigen RNAs are only 50 bases apart, suggesting that these two genes may be coordinately regulated. Moreover, both of these initiation sites appear to lie within the approximately 300-base double-stranded region (the nick region) between the 5' end of the HBV short strand and the nick in the viral long strand. We found two unusual sequence elements in the nick region that are conserved between the human and woodchuck viruses.

1983 ◽  
Vol 3 (10) ◽  
pp. 1774-1782 ◽  
Author(s):  
D N Standring ◽  
L B Rall ◽  
O Laub ◽  
W J Rutter

We demonstrated that cloned hepatitis B virus (HBV) DNA directs the synthesis of a 700-base RNA (HBV 700) by RNA polymerase III in a cell-free transcription system. HBV 700 is the only transcript known to originate from the viral short strand and has been mapped to the region between roughly 1,635 and 954 base pairs on the viral map, between the surface and core antigen coding sequences but overlapping and opposing the putative DNA polymerase and B protein genes. The in vitro initiation sites for the HBV 700 and core antigen RNAs are only 50 bases apart, suggesting that these two genes may be coordinately regulated. Moreover, both of these initiation sites appear to lie within the approximately 300-base double-stranded region (the nick region) between the 5' end of the HBV short strand and the nick in the viral long strand. We found two unusual sequence elements in the nick region that are conserved between the human and woodchuck viruses.


1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773 ◽  
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


Virology ◽  
1981 ◽  
Vol 111 (2) ◽  
pp. 647-652 ◽  
Author(s):  
Prasanta R. Chakraborty ◽  
Nelson Ruiz-Opazo ◽  
David A. Shafritz

1983 ◽  
Vol 3 (10) ◽  
pp. 1766-1773
Author(s):  
L B Rall ◽  
D N Standring ◽  
O Laub ◽  
W J Rutter

We employed an in vitro cell-free transcription system to locate RNA polymerase II promoters on the hepatitis B virus genome. The strongest promoter precedes the surface antigen (HBsAg) gene, which is comprised of a long (500 base pairs) presurface region as well as the mature HBsAg coding sequence. The origin of this transcript was localized by using truncated templates and S1 endonuclease mapping. The activity of the promoter was confirmed in transfection experiments in which the complete HBsAg gene was introduced into monkey kidney cells via a simian virus 40 expression vector. A second RNA polymerase II promoter preceding the HBcAg gene was also active in the cell-free system. The presence of multiple promoters in the hepatitis B virus genome suggests that the relative levels of viral-specific proteins detected in liver and serum may reflect differential or regulated promoter efficiency.


1997 ◽  
Vol 17 (12) ◽  
pp. 6838-6846 ◽  
Author(s):  
H D Wang ◽  
A Trivedi ◽  
D L Johnson

Our previous studies have shown that the hepatitis B virus protein, X, activates all three classes of RNA polymerase III (pol III)-dependent promoters by increasing the cellular level of TATA-binding protein (TBP) (H.-D. Wang et al., Mol. Cell. Biol. 15:6720-6728, 1995), a limiting transcription component (A. Trivedi et al., Mol. Cell. Biol. 16:6909-6916, 1996). We have investigated whether these X-mediated events are dependent on the activation of the Ras/Raf-1 signaling pathway. Transient expression of a dominant-negative mutant Ras gene (Ras-ala15) in a Drosophila S-2 stable cell line expressing X (X-S2), or incubation of the cells with a Ras farnesylation inhibitor, specifically blocked both the X-dependent activation of a cotransfected tRNA gene and the increase in cellular TBP levels. Transient expression of a constitutively activated form of Ras (Ras-val12) in control S2 cells produced both an increase in tRNA gene transcription and an increase in cellular TBP levels. These events are not cell type specific since X-mediated gene induction was also shown to be dependent on Ras activation in a stable rat 1A cell line expressing X. Furthermore, increases in RNA pol III-dependent gene activity and TBP levels could be restored in X-S2 cells expressing Ras-ala15 by coexpressing a constitutively activated form of Raf-1. These events are serum dependent, and when the cells are serum deprived, the X-mediated effects are augmented. Together, these results demonstrate that the X-mediated induction of RNA pol III-dependent genes and increase in TBP are both dependent on the activation of the Ras/Raf-1 signaling cascade. In addition, these studies define two new and important consequences mediated by the activation of the Ras signal transduction pathway: an increase in the central transcription factor, TBP, and the induction of RNA pol III-dependent gene activity.


1994 ◽  
Vol 43 (4) ◽  
pp. 404-411 ◽  
Author(s):  
Masaharu Hiraga ◽  
Akira Nishizono ◽  
Kumato Mifune ◽  
Mariko Esumi ◽  
Toshio Shikata

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2247
Author(s):  
Shonisani Wendy Limani ◽  
Njabulo Mnyandu ◽  
Abdullah Ely ◽  
Reubina Wadee ◽  
Anna Kramvis ◽  
...  

The paucity of animal models that simulate the replication of the hepatitis B virus (HBV) is an impediment to advancing new anti-viral treatments. The work reported here employed recombinant adeno-associated viruses (AAVs) to model HBV subgenotype A1 and subgenotype D3 replication in vitro and in vivo. Infection with subgenotype A1 is endemic to parts of sub-Saharan Africa, and it is associated with a high risk of hepatocellular carcinoma. Recombinant AAV serotype 2 (AAV2) and 8 (AAV8) vectors bearing greater-than-genome-length sequences of HBV DNA from subgenotype A1 and D3, were produced. Transduced liver-derived cultured cells produced HBV surface antigen and core antigen. Administration of AAV8 carrying HBV subgenotype A1 genome (AAV8-A1) to mice resulted in the sustained production of HBV replication markers over a six-month period, without elevated inflammatory cytokines, expression of interferon response genes or alanine transaminase activity. Markers of replication were generally higher in animals treated with subgenotype D3 genome-bearing AAVs than in those receiving the subgenotype A1-genome-bearing vectors. To validate the use of the AAV8-A1 murine model for anti-HBV drug development, the efficacy of anti-HBV artificial primary-microRNAs was assessed. Significant silencing of HBV markers was observed over a 6-month period after administering AAVs. These data indicate that AAVs conveniently and safely recapitulate the replication of different HBV subgenotypes, and the vectors may be used to assess antivirals’ potency.


Sign in / Sign up

Export Citation Format

Share Document