Construction and characterization of Chinese hamster cell EmtA EmtB double mutants

1983 ◽  
Vol 3 (5) ◽  
pp. 761-772
Author(s):  
S Chang ◽  
J J Wasmuth

Starting with hybrid cell lines between a Chinese hamster cell EmtA mutant and a Chinese hamster cell EmtB mutant, we have constructed cell lines that are homozygous for mutant alleles at both the emtA locus and the emtB locus, by using a two-step segregation protocol. The EmtA EmtB double mutants are approximately 10-fold more resistant to emetine inhibition than either of the parental mutants. Having both the EmtA mutation and the EmtB mutation expressed in the same cell also results in a level of resistance to cryptopleurine that is significantly higher than a simple additive effect of the two mutations alone. Analysis of ribosomal proteins by two-dimensional polyacrylamide gel electrophoresis demonstrated that a parental hybrid and a first-step segregant, which has lost the wild-type emtA allele, synthesize both a normal and an altered form of ribosomal protein S14, whereas an EmtA EmtB double mutant synthesizes only the altered form of this ribosomal protein. This result confirms that the emtB locus is the structural gene for ribosomal protein S14. Our results also suggest that the products of the emtA and emtB loci interact directly, indicating that the emtA locus, like the emtB locus, encodes a component of the ribosome.

1983 ◽  
Vol 3 (5) ◽  
pp. 761-772 ◽  
Author(s):  
S Chang ◽  
J J Wasmuth

Starting with hybrid cell lines between a Chinese hamster cell EmtA mutant and a Chinese hamster cell EmtB mutant, we have constructed cell lines that are homozygous for mutant alleles at both the emtA locus and the emtB locus, by using a two-step segregation protocol. The EmtA EmtB double mutants are approximately 10-fold more resistant to emetine inhibition than either of the parental mutants. Having both the EmtA mutation and the EmtB mutation expressed in the same cell also results in a level of resistance to cryptopleurine that is significantly higher than a simple additive effect of the two mutations alone. Analysis of ribosomal proteins by two-dimensional polyacrylamide gel electrophoresis demonstrated that a parental hybrid and a first-step segregant, which has lost the wild-type emtA allele, synthesize both a normal and an altered form of ribosomal protein S14, whereas an EmtA EmtB double mutant synthesizes only the altered form of this ribosomal protein. This result confirms that the emtB locus is the structural gene for ribosomal protein S14. Our results also suggest that the products of the emtA and emtB loci interact directly, indicating that the emtA locus, like the emtB locus, encodes a component of the ribosome.


1992 ◽  
Vol 44 (9) ◽  
pp. 1859-1868 ◽  
Author(s):  
Marguerite A. Sognier ◽  
Zhang Yin ◽  
Richard L. Eberle ◽  
James A. Belli

1986 ◽  
Vol 6 (10) ◽  
pp. 3428-3432
Author(s):  
D Karentz ◽  
J E Cleaver

Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.


1979 ◽  
Vol 9 (11) ◽  
pp. 875-886 ◽  
Author(s):  
Phil Lake ◽  
Edward A. Clark ◽  
Manoocher Khorshidi ◽  
Geoffrey H. Sunshine

1986 ◽  
Vol 6 (10) ◽  
pp. 3428-3432 ◽  
Author(s):  
D Karentz ◽  
J E Cleaver

Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.


Sign in / Sign up

Export Citation Format

Share Document