scholarly journals A splice junction deletion deficient in the transport of RNA does not polyadenylate nuclear RNA.

1983 ◽  
Vol 3 (8) ◽  
pp. 1381-1388 ◽  
Author(s):  
L P Villarreal ◽  
R T White

A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.

1983 ◽  
Vol 3 (8) ◽  
pp. 1381-1388
Author(s):  
L P Villarreal ◽  
R T White

A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.


1984 ◽  
Vol 4 (4) ◽  
pp. 813-816
Author(s):  
A Barkan ◽  
J E Mertz

The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.


1989 ◽  
Vol 9 (10) ◽  
pp. 4364-4371
Author(s):  
C Delsert ◽  
N Morin ◽  
D F Klessig

Expression of the L1 region of adenovirus is temporally regulated by alternative splicing to yield two major RNAs encoding the 52- to 55-kilodalton (52-55K) and IIIa polypeptides. The distal acceptor site (IIIa) is utilized only during the late phase of infection, whereas the proximal site (52-55K) is used at both early and late times. Several parameters that might affect this alternative splicing were tested by using expression vectors carrying the L1 region or mutated versions of it. In the absence of a virus-encoded or -induced factor(s), only the 52-55K acceptor was used. Decreasing the distance between the donor and the IIIa acceptor had no effect. Removal of the 52-55K acceptor induced IIIa splicing slightly, implying competition between the two acceptors. Fusion of the IIIa exon to the 52-55K intron greatly enhanced splicing of the IIIa junction, suggesting that the IIIa exon does not contain sequences that inhibit splicing. Thus, the lack of splicing to the IIIa acceptor in the absence of a virus-encoded or -induced factor(s) is probably due to the absence of a favorable sequence and/or the presence of a negative element 5' of the IIIa splice junction, or both. The presence of several adenovirus gene products, including VA RNAs, the E2A DNA-binding protein, and the products of E1A and E1B genes, did not facilitate use of the IIIa acceptor. In contrast, the simian virus 40 early proteins, probably large T antigen, induced IIIa splicing. This result, together with those of earlier studies, suggest that T antigen plays a role in modulation of alternative RNA splicing.


1982 ◽  
Vol 2 (12) ◽  
pp. 1550-1557
Author(s):  
Luis P. Villarreal ◽  
Susan Carr

The construction of a recombinant virus in the late region of simian virus 40 is presented. The small intervening sequence of late 19S RNA (0.760 to 0.765 map unit) was cloned and inserted into the Eco RI site (1.0 map unit) in the late region of simian virus 40. This is a mutant virus that now has two intervening sequences, one at the normal position (0.760 map unit) and another out of the context of its flanking sequence and now at 1.0 map unit. The recombinant appears poisonous, as repeated attempts to plaque it as a virus with a standard helper virus were unsuccessful. The transcription of this recombinant was, therefore, studied after direct DNA transfection onto CV-1 cells. Nuclease S1 analysis of mutant RNA indicates that the major nuclear transcript was a spliced but nuclear 16S RNA species. Normally, 16S RNA is not found in the nucleus. This result was shown to be an artifact of the DNA transfection protocol. When the glycerol shock was done after infection with virus, a similar alteration in the makeup of nuclear RNA was seen. A transient stock of this double-intron mutant was finally obtained, using a nonrevertable helper virus. The transcriptional analysis of this mutant showed that unspliced 19S RNA was not transported and remained within the nucleus, whereas spliced 19S and 16S RNAs were transported. We conclude that the retention of nuclear transcripts within the nucleus is not simply due to the presence of intronic sequences, as spliced 19S and 16S RNAs which contain the second intron were efficiently transported.


1984 ◽  
Vol 4 (1) ◽  
pp. 8-16 ◽  
Author(s):  
L Markoff ◽  
B C Lin ◽  
M M Sveda ◽  
C J Lai

A full-length double-stranded DNA copy of an influenza A virus N2 neuraminidase (NA) gene was cloned into the late region of pSV2330, a hybrid expression vector that includes pBR322 plasmid DNA sequences and the simian virus 40 early region and simian virus 40 late region promoters, splice sequences, and transcription termination sites. The protein encoded by the cloned wild-type NA gene was shown to be present in the cytoplasm of fixed cells and at the surface of "live" or unfixed cells by indirect immunofluorescence with N2 monoclonal antibodies. Immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of [35S]methionine-labeled proteins from wild-type vector-infected cells with heterospecific N2 antibody showed that the product of the cloned NA DNA comigrated with glycosylated NA from influenza virus-infected cells, remained associated with internal membranes of cells fractionated into membrane and cytoplasmic fractions, and could form an immunoprecipitable dimer. NA enzymatic activity was detectable after simian virus 40 lysis of vector-infected cells. These properties of the product of the cloned wild-type gene were compared with those of the polypeptides produced by three deletion mutant NA DNAs that were also cloned into the late region of the pSV2330 vector. These mutants lacked 7 (dlk), 21 (dlI), or all 23 amino acids (dlZ) of the amino (N)-terminal variable hydrophobic region that anchors the mature wild-type NA tetrameric structure in the infected cell or influenza viral membrane. Comparison of the phenotypes of these mutants showed that this region in the NA molecule also includes sequences that control translocation of the nascent polypeptide into membrane organelles for glycosylation.


1984 ◽  
Vol 4 (4) ◽  
pp. 813-816 ◽  
Author(s):  
A Barkan ◽  
J E Mertz

The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.


1984 ◽  
Vol 4 (1) ◽  
pp. 8-16
Author(s):  
L Markoff ◽  
B C Lin ◽  
M M Sveda ◽  
C J Lai

A full-length double-stranded DNA copy of an influenza A virus N2 neuraminidase (NA) gene was cloned into the late region of pSV2330, a hybrid expression vector that includes pBR322 plasmid DNA sequences and the simian virus 40 early region and simian virus 40 late region promoters, splice sequences, and transcription termination sites. The protein encoded by the cloned wild-type NA gene was shown to be present in the cytoplasm of fixed cells and at the surface of "live" or unfixed cells by indirect immunofluorescence with N2 monoclonal antibodies. Immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of [35S]methionine-labeled proteins from wild-type vector-infected cells with heterospecific N2 antibody showed that the product of the cloned NA DNA comigrated with glycosylated NA from influenza virus-infected cells, remained associated with internal membranes of cells fractionated into membrane and cytoplasmic fractions, and could form an immunoprecipitable dimer. NA enzymatic activity was detectable after simian virus 40 lysis of vector-infected cells. These properties of the product of the cloned wild-type gene were compared with those of the polypeptides produced by three deletion mutant NA DNAs that were also cloned into the late region of the pSV2330 vector. These mutants lacked 7 (dlk), 21 (dlI), or all 23 amino acids (dlZ) of the amino (N)-terminal variable hydrophobic region that anchors the mature wild-type NA tetrameric structure in the infected cell or influenza viral membrane. Comparison of the phenotypes of these mutants showed that this region in the NA molecule also includes sequences that control translocation of the nascent polypeptide into membrane organelles for glycosylation.


1989 ◽  
Vol 9 (10) ◽  
pp. 4364-4371 ◽  
Author(s):  
C Delsert ◽  
N Morin ◽  
D F Klessig

Expression of the L1 region of adenovirus is temporally regulated by alternative splicing to yield two major RNAs encoding the 52- to 55-kilodalton (52-55K) and IIIa polypeptides. The distal acceptor site (IIIa) is utilized only during the late phase of infection, whereas the proximal site (52-55K) is used at both early and late times. Several parameters that might affect this alternative splicing were tested by using expression vectors carrying the L1 region or mutated versions of it. In the absence of a virus-encoded or -induced factor(s), only the 52-55K acceptor was used. Decreasing the distance between the donor and the IIIa acceptor had no effect. Removal of the 52-55K acceptor induced IIIa splicing slightly, implying competition between the two acceptors. Fusion of the IIIa exon to the 52-55K intron greatly enhanced splicing of the IIIa junction, suggesting that the IIIa exon does not contain sequences that inhibit splicing. Thus, the lack of splicing to the IIIa acceptor in the absence of a virus-encoded or -induced factor(s) is probably due to the absence of a favorable sequence and/or the presence of a negative element 5' of the IIIa splice junction, or both. The presence of several adenovirus gene products, including VA RNAs, the E2A DNA-binding protein, and the products of E1A and E1B genes, did not facilitate use of the IIIa acceptor. In contrast, the simian virus 40 early proteins, probably large T antigen, induced IIIa splicing. This result, together with those of earlier studies, suggest that T antigen plays a role in modulation of alternative RNA splicing.


1982 ◽  
Vol 2 (12) ◽  
pp. 1550-1557 ◽  
Author(s):  
Luis P. Villarreal ◽  
Susan Carr

The construction of a recombinant virus in the late region of simian virus 40 is presented. The small intervening sequence of late 19S RNA (0.760 to 0.765 map unit) was cloned and inserted into theEcoRI site (1.0 map unit) in the late region of simian virus 40. This is a mutant virus that now has two intervening sequences, one at the normal position (0.760 map unit) and another out of the context of its flanking sequence and now at 1.0 map unit. The recombinant appears poisonous, as repeated attempts to plaque it as a virus with a standard helper virus were unsuccessful. The transcription of this recombinant was, therefore, studied after direct DNA transfection onto CV-1 cells. Nuclease S1 analysis of mutant RNA indicates that the major nuclear transcript was a spliced but nuclear 16S RNA species. Normally, 16S RNA is not found in the nucleus. This result was shown to be an artifact of the DNA transfection protocol. When the glycerol shock was done after infection with virus, a similar alteration in the makeup of nuclear RNA was seen. A transient stock of this double-intron mutant was finally obtained, using a nonrevertable helper virus. The transcriptional analysis of this mutant showed that unspliced 19S RNA was not transported and remained within the nucleus, whereas spliced 19S and 16S RNAs were transported. We conclude that the retention of nuclear transcripts within the nucleus is not simply due to the presence of intronic sequences, as spliced 19S and 16S RNAs which contain the second intron were efficiently transported.


Sign in / Sign up

Export Citation Format

Share Document