scholarly journals Genetic Test for Involvement of Intervening Sequences in Transport of Nuclear RNA

1982 ◽  
Vol 2 (12) ◽  
pp. 1550-1557 ◽  
Author(s):  
Luis P. Villarreal ◽  
Susan Carr

The construction of a recombinant virus in the late region of simian virus 40 is presented. The small intervening sequence of late 19S RNA (0.760 to 0.765 map unit) was cloned and inserted into theEcoRI site (1.0 map unit) in the late region of simian virus 40. This is a mutant virus that now has two intervening sequences, one at the normal position (0.760 map unit) and another out of the context of its flanking sequence and now at 1.0 map unit. The recombinant appears poisonous, as repeated attempts to plaque it as a virus with a standard helper virus were unsuccessful. The transcription of this recombinant was, therefore, studied after direct DNA transfection onto CV-1 cells. Nuclease S1 analysis of mutant RNA indicates that the major nuclear transcript was a spliced but nuclear 16S RNA species. Normally, 16S RNA is not found in the nucleus. This result was shown to be an artifact of the DNA transfection protocol. When the glycerol shock was done after infection with virus, a similar alteration in the makeup of nuclear RNA was seen. A transient stock of this double-intron mutant was finally obtained, using a nonrevertable helper virus. The transcriptional analysis of this mutant showed that unspliced 19S RNA was not transported and remained within the nucleus, whereas spliced 19S and 16S RNAs were transported. We conclude that the retention of nuclear transcripts within the nucleus is not simply due to the presence of intronic sequences, as spliced 19S and 16S RNAs which contain the second intron were efficiently transported.

1982 ◽  
Vol 2 (12) ◽  
pp. 1550-1557
Author(s):  
Luis P. Villarreal ◽  
Susan Carr

The construction of a recombinant virus in the late region of simian virus 40 is presented. The small intervening sequence of late 19S RNA (0.760 to 0.765 map unit) was cloned and inserted into the Eco RI site (1.0 map unit) in the late region of simian virus 40. This is a mutant virus that now has two intervening sequences, one at the normal position (0.760 map unit) and another out of the context of its flanking sequence and now at 1.0 map unit. The recombinant appears poisonous, as repeated attempts to plaque it as a virus with a standard helper virus were unsuccessful. The transcription of this recombinant was, therefore, studied after direct DNA transfection onto CV-1 cells. Nuclease S1 analysis of mutant RNA indicates that the major nuclear transcript was a spliced but nuclear 16S RNA species. Normally, 16S RNA is not found in the nucleus. This result was shown to be an artifact of the DNA transfection protocol. When the glycerol shock was done after infection with virus, a similar alteration in the makeup of nuclear RNA was seen. A transient stock of this double-intron mutant was finally obtained, using a nonrevertable helper virus. The transcriptional analysis of this mutant showed that unspliced 19S RNA was not transported and remained within the nucleus, whereas spliced 19S and 16S RNAs were transported. We conclude that the retention of nuclear transcripts within the nucleus is not simply due to the presence of intronic sequences, as spliced 19S and 16S RNAs which contain the second intron were efficiently transported.


1983 ◽  
Vol 3 (8) ◽  
pp. 1381-1388 ◽  
Author(s):  
L P Villarreal ◽  
R T White

A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.


1983 ◽  
Vol 3 (8) ◽  
pp. 1381-1388
Author(s):  
L P Villarreal ◽  
R T White

A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.


2002 ◽  
Vol 362 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Rama K. MALLAMPALLI ◽  
Alan J. RYAN ◽  
James L. CARROLL ◽  
Timothy F. OSBORNE ◽  
Christie P. THOMAS

Lipid-deprived mice increase alveolar surfactant disaturated phosphatidylcholine (DSPtdCho) synthesis compared with mice fed a standard diet by increasing expression of CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme for DSPtdCho synthesis. We previously observed that lipid deprivation increases mRNA synthesis for CCT [Ryan, McCoy, Mathur, Field and Mallampalli (2000) J. Lipid Res. 41, 1268–1277]. To evaluate regulatory mechanisms for this gene, we cloned the proximal ∼ 1900bp of the 5′ flanking sequence of the murine CCT gene, coupled this to a luciferase reporter, and examined transcriptional regulation in a murine alveolar epithelial type II cell line (MLE-12). The core promoter was localized to a region between −169 and +71bp, which exhibited strong basal activity comparable with the simian virus 40 promoter. The full-length construct, from −1867 to +71, was induced 2–3-fold when cells were cultured in lipoprotein-deficient serum (LPDS), similar to the level of induction of the endogenous CCT gene. By deletional analysis the sterol regulatory element (SRE) was localized within a 240bp region. LPDS activation of the CCT promoter was abolished by mutation of this SRE, and gel mobility-shift assays demonstrated specific binding of recombinant SRE-binding protein to this element within the CCT promoter. These observations indicate that sterol-regulated expression of CCT is mediated by an SRE within its 5′ flanking region.


1984 ◽  
Vol 4 (4) ◽  
pp. 813-816
Author(s):  
A Barkan ◽  
J E Mertz

The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.


1986 ◽  
Vol 6 (7) ◽  
pp. 2704-2711 ◽  
Author(s):  
D S Peabody ◽  
S Subramani ◽  
P Berg

In a previous report (S. Subramani, R. Mulligan, and P. Berg, Mol. Cell. Biol. 1:854-864, 1981), it was shown that mouse dihydrofolate reductase (DHFR) could be efficiently expressed from simian virus 40 recombinant viruses containing the DHFR cDNA in different locations in the viral late region. This was true even in the case of the SVGT7dhfr26 recombinant, which had the DHFR coding sequence 700 to 800 nucleotides from the 5' end of the mRNA, where it was preceded by the VP2 and VP3 initiator AUGs and a number of other noninitiator AUGs. To investigate the process of internal translation initiation in mammalian cells, we constructed a series of SVGT7dhfr recombinants in which the upstream VP2 and VP3 reading frame was terminated in various positions relative to the DHFR initiation codon. The efficient production of DHFR in infected CV1 cells depended on having the terminators of the VP2-VP3 reading frame positioned upstream or nearby downstream from the DHFR initiation codon. These results reinforce the notion that mammalian ribosomes are capable of translational reinitiation.


1988 ◽  
Vol 8 (1) ◽  
pp. 96-104 ◽  
Author(s):  
D D Petersen ◽  
M A Magnuson ◽  
D K Granner

Chimeric genes were constructed by fusion of various regions of the 5'-flanking sequence from the phosphoenolpyruvate carboxykinase (GTP) (PEPCK) gene to the chloramphenicol acetyltransferase-coding sequence and to simian virus 40 splice and polyadenylation sequences. These were used to demonstrate that two glucocorticoid regulatory elements (GREs) combine to confer glucocorticoid responsiveness upon the PEPCK gene in H4IIE hepatoma cells. Both elements, a distal one whose 5' boundary is located between -1264 and -1111 base pairs and a proximal one located between -468 and -420 base pairs relative to the transcription initiation site, act independently, in various positions and orientations, and upon the heterologous thymidine kinase promoter. Each element accounts for half of the maximal response of the chimeric genes. Therefore, two widely separated enhancerlike elements contribute equally to the response of the PEPCK gene to glucocorticoid hormones. Neither of the PEPCK GREs contains the TGTTCT consensus sequence associated with most other GREs.


1983 ◽  
Vol 3 (6) ◽  
pp. 991-999
Author(s):  
M Fromm ◽  
P Berg

Tandemly repeated 72-base-pair (bp) segments located between nucleotides 107 and 250 of the simian virus 40 genome are essential for early region transcription. The functional requirement for the 72-bp repeat was supplied even when that segment was translocated to several locations distant from, and in different orientation, relative to, the promoter. Regardless of the position of the 72-bp enhancer segment, transcription was initiated at the same locations as with the normal promoter. Translocation of the 72-bp repeat segment to other sites in the genome resulted in the appearance of DNase I hypersensitivity at that site in the intranuclear viral minichromosomes. One of the translocations which did not produce enhancement of early- and late-region expression also failed to create a DNase I-hypersensitive site at the translocated 72-bp segment.


1988 ◽  
Vol 8 (1) ◽  
pp. 96-104
Author(s):  
D D Petersen ◽  
M A Magnuson ◽  
D K Granner

Chimeric genes were constructed by fusion of various regions of the 5'-flanking sequence from the phosphoenolpyruvate carboxykinase (GTP) (PEPCK) gene to the chloramphenicol acetyltransferase-coding sequence and to simian virus 40 splice and polyadenylation sequences. These were used to demonstrate that two glucocorticoid regulatory elements (GREs) combine to confer glucocorticoid responsiveness upon the PEPCK gene in H4IIE hepatoma cells. Both elements, a distal one whose 5' boundary is located between -1264 and -1111 base pairs and a proximal one located between -468 and -420 base pairs relative to the transcription initiation site, act independently, in various positions and orientations, and upon the heterologous thymidine kinase promoter. Each element accounts for half of the maximal response of the chimeric genes. Therefore, two widely separated enhancerlike elements contribute equally to the response of the PEPCK gene to glucocorticoid hormones. Neither of the PEPCK GREs contains the TGTTCT consensus sequence associated with most other GREs.


Sign in / Sign up

Export Citation Format

Share Document