Isolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans

1984 ◽  
Vol 4 (3) ◽  
pp. 529-537
Author(s):  
M R Klass ◽  
S Kinsley ◽  
L C Lopez

The major sperm protein (MSP) of the nematode Caenorhabditis elegans is a low-molecular-weight (15,000) basic protein implicated in the pseudopodial movement of mature spermatozoa. Its synthesis occurs in a specific region of the gonad and is regulated at the level of transcription (M. Klass and D. Hirsh, Dev. Biol. 84:299-312, 1981; S. Ward and M. Klass, Dev. Biol. 92:203-208, 1982; Klass et al., Dev. Biol. 93:152-164, 1982). A developmentally regulated gene family has been identified that codes for this MSP. Whole genomic blots, as well as analysis of genomic clone banks, indicate that there are between 15 and 25 copies of the MSP gene in the nematode genome. Southern blot analysis also indicates that there is no rearrangement or amplification within the MSP gene family during development. No evidence was found of methylation at various restriction sites surrounding the MSP gene family, and similarly, no correlation between methylation and expression was observed. Three distinct members of this MSP gene family have been cloned, and their nucleotide sequences have been determined. Differential screening of a cDNA clone bank made from polyadenylated mRNA from adult males yielded 45 male-specific clones, 32 of which were clones of MSP genes. One of these cDNA clones was found to contain the entire nucleotide sequence for the MSP, including part of the 5' leader and all of the 3' trailing sequence. Genomic clones bearing copies of the MSP genes have been isolated. At least one of the members of this gene family is a pseudogene. Another member of the MSP gene family that has been cloned from genomic DNA contains the entire uninterrupted structural sequence for the MSP in addition to a 5' flanking sequence containing a promoter-like region with the classic TATA box, a sequence resembling the CAAT box, and a putative ribosome-binding sequence. The 3' trailing sequences of the genomic and the cDNA clones contain an AATAAA polyadenylation site.

1984 ◽  
Vol 4 (3) ◽  
pp. 529-537 ◽  
Author(s):  
M R Klass ◽  
S Kinsley ◽  
L C Lopez

The major sperm protein (MSP) of the nematode Caenorhabditis elegans is a low-molecular-weight (15,000) basic protein implicated in the pseudopodial movement of mature spermatozoa. Its synthesis occurs in a specific region of the gonad and is regulated at the level of transcription (M. Klass and D. Hirsh, Dev. Biol. 84:299-312, 1981; S. Ward and M. Klass, Dev. Biol. 92:203-208, 1982; Klass et al., Dev. Biol. 93:152-164, 1982). A developmentally regulated gene family has been identified that codes for this MSP. Whole genomic blots, as well as analysis of genomic clone banks, indicate that there are between 15 and 25 copies of the MSP gene in the nematode genome. Southern blot analysis also indicates that there is no rearrangement or amplification within the MSP gene family during development. No evidence was found of methylation at various restriction sites surrounding the MSP gene family, and similarly, no correlation between methylation and expression was observed. Three distinct members of this MSP gene family have been cloned, and their nucleotide sequences have been determined. Differential screening of a cDNA clone bank made from polyadenylated mRNA from adult males yielded 45 male-specific clones, 32 of which were clones of MSP genes. One of these cDNA clones was found to contain the entire nucleotide sequence for the MSP, including part of the 5' leader and all of the 3' trailing sequence. Genomic clones bearing copies of the MSP genes have been isolated. At least one of the members of this gene family is a pseudogene. Another member of the MSP gene family that has been cloned from genomic DNA contains the entire uninterrupted structural sequence for the MSP in addition to a 5' flanking sequence containing a promoter-like region with the classic TATA box, a sequence resembling the CAAT box, and a putative ribosome-binding sequence. The 3' trailing sequences of the genomic and the cDNA clones contain an AATAAA polyadenylation site.


1985 ◽  
Vol 5 (6) ◽  
pp. 1212-1219
Author(s):  
E Resendez ◽  
J W Attenello ◽  
A Grafsky ◽  
C S Chang ◽  
A S Lee

Using two cDNA clones which encode hamster genes specifically induced by glucose starvation, we demonstrated that an 8- and 30-fold increase, respectively, in the transcription rates of these genes was coordinately effected by calcium ionophore A23187 treatment, resulting in a similar increase in the steady-state levels of their mRNAs. This response was observed within several hours of ionophore treatment in several mammalian cell types and appeared to be specifically mediated by A23187 but not by other ionophores in general. To define the regulatory sequence which mediates this Ca2+-induced response, we showed by gene transfection techniques that the 5' flanking sequence of a rat glucose-regulated gene contained the region for induction by A23187. The system reported here offers attractive features for the study of specific gene regulation by Ca2+.


1998 ◽  
Vol 58 (1-2) ◽  
pp. 103-111 ◽  
Author(s):  
Laura S. Nelson ◽  
Kyuhyung Kim ◽  
John E. Memmott ◽  
Chris Li

1985 ◽  
Vol 5 (6) ◽  
pp. 1212-1219 ◽  
Author(s):  
E Resendez ◽  
J W Attenello ◽  
A Grafsky ◽  
C S Chang ◽  
A S Lee

Using two cDNA clones which encode hamster genes specifically induced by glucose starvation, we demonstrated that an 8- and 30-fold increase, respectively, in the transcription rates of these genes was coordinately effected by calcium ionophore A23187 treatment, resulting in a similar increase in the steady-state levels of their mRNAs. This response was observed within several hours of ionophore treatment in several mammalian cell types and appeared to be specifically mediated by A23187 but not by other ionophores in general. To define the regulatory sequence which mediates this Ca2+-induced response, we showed by gene transfection techniques that the 5' flanking sequence of a rat glucose-regulated gene contained the region for induction by A23187. The system reported here offers attractive features for the study of specific gene regulation by Ca2+.


Genetics ◽  
1988 ◽  
Vol 119 (1) ◽  
pp. 43-61 ◽  
Author(s):  
T Schedl ◽  
J Kimble

Abstract This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3.


Sign in / Sign up

Export Citation Format

Share Document