scholarly journals Signals for transcription initiation and termination in the Saccharomyces cerevisiae plasmid 2 micron circle.

1985 ◽  
Vol 5 (10) ◽  
pp. 2770-2780 ◽  
Author(s):  
A Sutton ◽  
J R Broach

By S1 nuclease protection experiments and primer extension analysis, we determined precisely the cap and polyadenylation sites of transcripts from the four genes of the yeast 2 micron circle plasmid, as well as those of other plasmid transcripts of unknown function. In addition, we used deletion analysis to identify sequences necessary for polyadenylation in plasmid transcripts. Our results indicate that plasmid genes constitute independent transcription units and that plasmid mRNAs are not derived by extensive processing of precursor transcripts. In addition, we found that the D coding region of 2 micron circle is precisely encompassed by a polyadenylated transcript, suggesting that this coding region constitutes a functional plasmid gene. Our identification of the position of plasmid polyadenylation sites and of sequences necessary for polyadenylation provides support for a tripartite signal for polyadenylation as proposed by Zaret and Sherman (K.S. Zaret and F. Sherman, Cell 28:563-573, 1982). Finally, these data highlight salient features of the transcriptional regulatory circuitry that underlies the control of plasmid maintenance in the cell.

1985 ◽  
Vol 5 (10) ◽  
pp. 2770-2780
Author(s):  
A Sutton ◽  
J R Broach

By S1 nuclease protection experiments and primer extension analysis, we determined precisely the cap and polyadenylation sites of transcripts from the four genes of the yeast 2 micron circle plasmid, as well as those of other plasmid transcripts of unknown function. In addition, we used deletion analysis to identify sequences necessary for polyadenylation in plasmid transcripts. Our results indicate that plasmid genes constitute independent transcription units and that plasmid mRNAs are not derived by extensive processing of precursor transcripts. In addition, we found that the D coding region of 2 micron circle is precisely encompassed by a polyadenylated transcript, suggesting that this coding region constitutes a functional plasmid gene. Our identification of the position of plasmid polyadenylation sites and of sequences necessary for polyadenylation provides support for a tripartite signal for polyadenylation as proposed by Zaret and Sherman (K.S. Zaret and F. Sherman, Cell 28:563-573, 1982). Finally, these data highlight salient features of the transcriptional regulatory circuitry that underlies the control of plasmid maintenance in the cell.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1986 ◽  
Vol 6 (12) ◽  
pp. 4335-4343
Author(s):  
J E Ogden ◽  
C Stanway ◽  
S Kim ◽  
J Mellor ◽  
A J Kingsman ◽  
...  

The Saccharomyces cerevisiae PGK (phosphoglycerate kinase) gene encodes one of the most abundant mRNA and protein species in the cell. To identify the promoter sequences required for the efficient expression of PGK, we undertook a detailed internal deletion analysis of the 5' noncoding region of the gene. Our analysis revealed that PGK has an upstream activation sequence (UASPGK) located between 402 and 479 nucleotides upstream from the initiating ATG sequence which is required for full transcriptional activity. Deletion of this sequence caused a marked reduction in the levels of PGK transcription. We showed that PGK has no requirement for TATA sequences; deletion of one or both potential TATA sequences had no effect on either the levels of PGK expression or the accuracy of transcription initiation. We also showed that the UASPGK functions as efficiently when in the inverted orientation and that it can enhance transcription when placed upstream of a TRP1-IFN fusion gene comprising the promoter of TRP1 fused to the coding region of human interferon alpha-2.


1995 ◽  
Vol 310 (3) ◽  
pp. 757-763 ◽  
Author(s):  
A Magyar ◽  
E Bakos ◽  
A Váradi

A 14 kb genomic clone covering the organellar-type Ca(2+)-ATPase gene of Drosophila melanogaster has been isolated and characterized. The sequence of a 7132 bp region extending from 1.1 kb 5′ upstream of the initiation ATG codon over the polyadenylation signal at the 3′ end has been determined. The gene consists of nine exons including one with an exceptional size of 2172 bp representing 72% of the protein coding region. Introns are relatively small (< 100 bp) except for the 3′ intron which has a size of 2239 bp, an exceptionally large size among Drosophila introns. Five of the introns are in the same positions in Drosophila, Artemia and rabbit SERCA1 Ca(2+)-ATPase genes. There is only one organellar-type Ca(2+)-ATPase gene in the Drosophila genome, as was shown by Southern-blot analysis [Váradi, Gilmore-Hebert and Benz (1989) FEBS Lett. 258, 203-207] and by chromosomal localization [Magyar and Váradi (1990) Biochem. Biophys. Res. Commun. 173, 872-877]. Primer extension and S1-nuclease assays revealed a potential transcription initiation site 876 bp upstream of the translation initiation ATG with a TATA-box 23 bp upstream of this site. Analysis of the 5′ region of the Drosophila organellar-type Ca(2+)-ATPase gene suggests the presence of potential recognition sequences of various muscle-specific transcription factors and shows a region with remarkable similarity to that in the rabbit SERCA2 gene. The tissue distribution of expression of the organellar-type Ca(2+)-ATPase gene has been studied by in situ RNA-RNA hybridization on microscopic sections. A low mRNA abundance can be detected in each tissue of adult flies, suggesting a housekeeping function for the gene. On the other hand a pronounced tissue specificity of expression has also been found as the organellar-type Ca(2+)-ATPase is expressed at a very high level in cell bodies of the central nervous system and in various muscles.


Genetics ◽  
1992 ◽  
Vol 131 (3) ◽  
pp. 531-539 ◽  
Author(s):  
C Bornaes ◽  
J G Petersen ◽  
S Holmberg

Abstract The catabolic L-serine (L-threonine) dehydratase of Saccharomyces cerevisiae allows the yeast to grow on media with L-serine or L-threonine as sole nitrogen source. Previously we have cloned the CHA1 gene by complementation of a mutant, cha1, lacking the dehydratase activity. Here we present the DNA sequence of a 1,766-bp fragment of the CHA1 region encompassing an open reading frame of 1080 bp. Comparison of the predicted amino acid sequence of the CHA1 polypeptide with that of other serine/threonine dehydratases revealed several blocks of sequence homology. Thus, the amino acid sequence of rat liver serine dehydratase (SDH2) and the CHA1 polypeptide are 44% homologous allowing for conservative substitutions, while 36% similarity is found between the catabolic threonine dehydratase (tdcB) of Escherichia coli and the CHA1 protein. This strongly suggests that CHA1 is the structural gene for the yeast catabolic serine (threonine) dehydratase. S1-nuclease mapping of the CHA1 mRNA ends showed a major transcription initiation site corresponding to an untranslated leader of about 19 nucleotides, while a major polyadenylation site was located about 86 nucleotides downstream from the open reading frame. Furthermore, we have mapped the chromosomal position of the CHA1 gene to less than 0.5 kb centromere proximal to HML on the left arm of chromosome III.


1991 ◽  
Vol 11 (4) ◽  
pp. 1820-1828 ◽  
Author(s):  
C Bartholomew ◽  
J N Ihle

The inappropriate production of the Evi-1 zinc finger protein occurs in retrovirus-induced murine myeloid leukemias and human acute myelogenous leukemias. In murine leukemias, expression of the Evi-1 gene is associated with retroviral insertions either in the Evi-1 locus, which is immediately 5' of the coding region of the gene, or in the genetically linked Cb-1/fim-3 locus. In these studies, we demonstrate by chromosomal walking and pulse field electrophoresis that the Cb-1/fim-3 locus is located 90 kb 5' of the Evi-1 locus. Primary structure analysis of Evi-1 cDNA clones from a Cb-1/fim-3 rearranged cell line (DA-3) demonstrates that transcription initiates 5' of the Evi-1 locus and that the first noncoding exon of the gene is 681 bp larger than previously defined. S1 nuclease protection studies reveal multiple transcription initiation sites within this region. Comparable transcriptional initiation sites were identified in RNA from kidney and ovary, in which the gene is normally expressed, suggesting that retroviral insertions in the Cb-1/fim-3 locus activate transcription from the normal promoter. In one myeloid cell line (DA-3), a single long terminal repeat (LTR) is present in the Cb-1/fim-3 locus. No stable transcripts were detectable from this LTR. In cells with retroviral insertions in the Cb-1/fim-3 locus, one allele of the Evi-1 locus becomes hypermethylated in the 5' region of the gene. Together, these results are most consistent with an LTR-mediated, long-range cis activation of Evi-1 gene expression.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26 ◽  
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1986 ◽  
Vol 6 (12) ◽  
pp. 4335-4343 ◽  
Author(s):  
J E Ogden ◽  
C Stanway ◽  
S Kim ◽  
J Mellor ◽  
A J Kingsman ◽  
...  

The Saccharomyces cerevisiae PGK (phosphoglycerate kinase) gene encodes one of the most abundant mRNA and protein species in the cell. To identify the promoter sequences required for the efficient expression of PGK, we undertook a detailed internal deletion analysis of the 5' noncoding region of the gene. Our analysis revealed that PGK has an upstream activation sequence (UASPGK) located between 402 and 479 nucleotides upstream from the initiating ATG sequence which is required for full transcriptional activity. Deletion of this sequence caused a marked reduction in the levels of PGK transcription. We showed that PGK has no requirement for TATA sequences; deletion of one or both potential TATA sequences had no effect on either the levels of PGK expression or the accuracy of transcription initiation. We also showed that the UASPGK functions as efficiently when in the inverted orientation and that it can enhance transcription when placed upstream of a TRP1-IFN fusion gene comprising the promoter of TRP1 fused to the coding region of human interferon alpha-2.


1991 ◽  
Vol 11 (4) ◽  
pp. 1820-1828
Author(s):  
C Bartholomew ◽  
J N Ihle

The inappropriate production of the Evi-1 zinc finger protein occurs in retrovirus-induced murine myeloid leukemias and human acute myelogenous leukemias. In murine leukemias, expression of the Evi-1 gene is associated with retroviral insertions either in the Evi-1 locus, which is immediately 5' of the coding region of the gene, or in the genetically linked Cb-1/fim-3 locus. In these studies, we demonstrate by chromosomal walking and pulse field electrophoresis that the Cb-1/fim-3 locus is located 90 kb 5' of the Evi-1 locus. Primary structure analysis of Evi-1 cDNA clones from a Cb-1/fim-3 rearranged cell line (DA-3) demonstrates that transcription initiates 5' of the Evi-1 locus and that the first noncoding exon of the gene is 681 bp larger than previously defined. S1 nuclease protection studies reveal multiple transcription initiation sites within this region. Comparable transcriptional initiation sites were identified in RNA from kidney and ovary, in which the gene is normally expressed, suggesting that retroviral insertions in the Cb-1/fim-3 locus activate transcription from the normal promoter. In one myeloid cell line (DA-3), a single long terminal repeat (LTR) is present in the Cb-1/fim-3 locus. No stable transcripts were detectable from this LTR. In cells with retroviral insertions in the Cb-1/fim-3 locus, one allele of the Evi-1 locus becomes hypermethylated in the 5' region of the gene. Together, these results are most consistent with an LTR-mediated, long-range cis activation of Evi-1 gene expression.


1989 ◽  
Vol 9 (11) ◽  
pp. 4824-4834
Author(s):  
P Farabaugh ◽  
X B Liao ◽  
M Belcourt ◽  
H Zhao ◽  
J Kapakos ◽  
...  

The Ty2-917 element is a member of the Ty2 class of retroviruslike transposable elements of Saccharomyces cerevisiae. We showed that regions downstream of the Ty2-917 transcription start site modulate its transcription. One region was located downstream of the transcription initiation site (position 240) and within the first 559 base pairs of the element. This region had a dramatic effect, causing an approximately 1,000-fold increase in steady-state levels of RNA. The region stimulated transcription when placed in either orientation upstream of a heterologous gene, HIS4, lacking its own upstream activation sequence (UAS). We termed this positively acting region an enhancer, by analogy to sites described in higher cells, to distinguish it from yeast UASs which do not function when placed within the transcribed portion of the gene. Though, like some higher eucaryotic enhancers, the Ty2-917 enhancer is located within the transcribed region, it is unlike them in that it occurs within a coding region rather than in an intron. The Ty2-917 enhancer and the Ty2-917 UAS had a synergistic effect on transcription, together stimulating transcription 15-fold over the predicted additive effect. We also identified a site which decreases RNA accumulation, located about 750 base pairs into the element. This site functioned in only one orientation when inserted upstream of the UAS-less heterologous gene. The site was similar to silencers, or negative enhancers, in that it acted to repress transcription from outside the transcribed region, but was distinct in that the function of a canonical silencer was independent of orientation.


Sign in / Sign up

Export Citation Format

Share Document