scholarly journals New host cell system for regulated simian virus 40 DNA replication.

1985 ◽  
Vol 5 (11) ◽  
pp. 3231-3240 ◽  
Author(s):  
R D Gerard ◽  
Y Gluzman

Transformed monkey cell lines (CMT and BMT) that inducible express simian virus 40 (SV40) T antigen from the metallothionein promoter have been isolated and characterized. Immunoprecipitation of pulse-labeled T antigen demonstrates a 5- to 12-fold increase in the rate of synthesis on addition of heavy-metal inducers to the culture medium. Radioimmunoassay of cell extracts indicates the accumulation of three- to fourfold more total T antigen after 2 days of induction by comparison with uninduced controls. A direct correlation was found between the level of T-antigen synthesis and the extent of SV40 DNA replication in inducible cells. Inducible BMT cells expressing a low basal level of T antigen were efficiently transformed by a vector carrying the neomycin resistance marker and an SV40 origin of replication. These vector sequences were maintained in an episomal form in most G418-resistant cell lines examined and persisted even in the absence of biochemical selection. Extensive rearrangements were observed only if the vector contained bacterial plasmid sequences. Expression of a protein product under the control of the SV40 late promoter in such vectors was increased after heavy-metal-dependent amplification of the template. These results demonstrate the ability of BMT cells to maintain a cloned eucaryotic gene in an amplifiable episomal state.

1985 ◽  
Vol 5 (11) ◽  
pp. 3231-3240 ◽  
Author(s):  
R D Gerard ◽  
Y Gluzman

Transformed monkey cell lines (CMT and BMT) that inducible express simian virus 40 (SV40) T antigen from the metallothionein promoter have been isolated and characterized. Immunoprecipitation of pulse-labeled T antigen demonstrates a 5- to 12-fold increase in the rate of synthesis on addition of heavy-metal inducers to the culture medium. Radioimmunoassay of cell extracts indicates the accumulation of three- to fourfold more total T antigen after 2 days of induction by comparison with uninduced controls. A direct correlation was found between the level of T-antigen synthesis and the extent of SV40 DNA replication in inducible cells. Inducible BMT cells expressing a low basal level of T antigen were efficiently transformed by a vector carrying the neomycin resistance marker and an SV40 origin of replication. These vector sequences were maintained in an episomal form in most G418-resistant cell lines examined and persisted even in the absence of biochemical selection. Extensive rearrangements were observed only if the vector contained bacterial plasmid sequences. Expression of a protein product under the control of the SV40 late promoter in such vectors was increased after heavy-metal-dependent amplification of the template. These results demonstrate the ability of BMT cells to maintain a cloned eucaryotic gene in an amplifiable episomal state.


1992 ◽  
Vol 12 (6) ◽  
pp. 2514-2524 ◽  
Author(s):  
Z S Guo ◽  
M L DePamphilis

The origins of DNA replication (ori) in simian virus 40 (SV40) and polyomavirus (Py) contain an auxiliary component (aux-2) composed of multiple transcription factor binding sites. To determine whether this component stimulated replication by binding specific transcription factors, aux-2 was replaced by synthetic oligonucleotides that bound a single transcription factor. Sp1 and T-antigen (T-ag) sites, which exist in the natural SV40 aux-2 sequence, provided approximately 75 and approximately 20%, respectively, of aux-2 activity when transfected into monkey cells. In cell extracts, only T-ag sites were active. AP1 binding sites could replace completely either SV40 or Py aux-2. Mutations that eliminated AP1 binding also eliminated AP1 stimulation of replication. Yeast GAL4 binding sites that strongly stimulated transcription in the presence of GAL4 proteins failed to stimulate SV40 DNA replication, although they did partially replace Py aux-2. Stimulation required the presence of proteins consisting of the GAL4 DNA binding domain fused to specific activation domains such as VP16 or c-Jun. These data demonstrate a clear role for transcription factors with specific activation domains in activating both SV40 and Py ori. However, no correlation was observed between the ability of specific proteins to stimulate promoter activity and their ability to stimulate origin activity. We propose that only transcription factors whose specific activation domains can interact with the T-ag initiation complex can stimulate SV40 and Py ori-core activity.


1999 ◽  
Vol 73 (2) ◽  
pp. 1099-1107 ◽  
Author(s):  
Utz Herbig ◽  
Klaus Weisshart ◽  
Poonam Taneja ◽  
Ellen Fanning

ABSTRACT Simian virus 40 (SV40) large tumor (T) antigen is the major regulatory protein that directs the course of viral infection, primarily by interacting with host cell proteins and modulating their functions. Initiation of viral DNA replication requires specific interactions of T antigen bound to the viral origin of DNA replication with cellular replication proteins. Transcription factors are thought to stimulate initiation of viral DNA replication, but the mechanism of stimulation is poorly understood. Since the transcription factor TATA-binding protein (TBP) binds to sequences within the origin of replication and interacts specifically with T antigen, we examined whether TBP complexes stimulate SV40 DNA replication in vitro. On the contrary, we found that depletion of TBP complexes from human cell extracts increased their ability to support viral DNA replication, and readdition of TBP complexes to the depleted extracts diminished their activity. We have mapped the sites of interaction between the proteins to residues 181 to 205 of T antigen and 184 to 220 of TBP. Titration of fusion proteins containing either of these peptides into undepleted cell extracts stimulated their replication activity, suggesting that they prevented the T antigen-TBP interaction that interfered with replication activity. TBP complexes also interfered with origin DNA unwinding by purified T antigen, and addition of either the T antigen or the TBP fusion peptide relieved the inhibition. These results suggest that TBP complexes associate with a T-antigen surface that is also required for origin DNA unwinding and viral DNA replication. We speculate that competition among cellular proteins for T antigen may play a role in regulating the course of viral infection.


1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006 ◽  
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.


1990 ◽  
Vol 10 (4) ◽  
pp. 1719-1728 ◽  
Author(s):  
C Gutierrez ◽  
Z S Guo ◽  
J Roberts ◽  
M L DePamphilis

The complete simian virus 40 (SV40) origin of DNA replication (ori) consists of a required core sequence flanked by two auxiliary sequences that together increase the rate of DNA replication in monkey cells about 25-fold. Using an extract of SV40-infected monkey cells that reproduced the effects of ori-auxiliary sequences on DNA replication, we examined the ability of ori-auxiliary sequences to facilitate binding of replication factors and to promote DNA unwinding. Although the replicationally active form of T antigen in these extracts had a strong affinity for ori-core, it had only a weak but specific affinity for ori-auxiliary sequences. Deletion of ori-auxiliary sequences reduced the affinity of ori-core for active T antigen by only 1.6-fold, consistent with the fact that saturating concentrations of T antigen in the cell extract did not reduce the stimulatory role of ori-auxiliary sequences in replication. In contrast, deletion of ori-auxiliary sequences reduced the efficiency of ori-specific, T-antigen-dependent DNA unwinding in cell extracts at least 15-fold. With only purified T antigen in the presence of topoisomerase I to unwind purified DNA, ori-auxiliary sequences strongly facilitated T-antigen-dependent DNA conformational changes consistent with melting the first 50 base pairs. Under these conditions, ori-auxiliary sequences had little effect on the binding of T antigen to DNA. Therefore, a primary role of ori-auxiliary sequences in DNA replication is to facilitate T-antigen-dependent DNA unwinding after the T-antigen preinitiation complex is bound to ori-core.


1990 ◽  
Vol 10 (4) ◽  
pp. 1719-1728 ◽  
Author(s):  
C Gutierrez ◽  
Z S Guo ◽  
J Roberts ◽  
M L DePamphilis

The complete simian virus 40 (SV40) origin of DNA replication (ori) consists of a required core sequence flanked by two auxiliary sequences that together increase the rate of DNA replication in monkey cells about 25-fold. Using an extract of SV40-infected monkey cells that reproduced the effects of ori-auxiliary sequences on DNA replication, we examined the ability of ori-auxiliary sequences to facilitate binding of replication factors and to promote DNA unwinding. Although the replicationally active form of T antigen in these extracts had a strong affinity for ori-core, it had only a weak but specific affinity for ori-auxiliary sequences. Deletion of ori-auxiliary sequences reduced the affinity of ori-core for active T antigen by only 1.6-fold, consistent with the fact that saturating concentrations of T antigen in the cell extract did not reduce the stimulatory role of ori-auxiliary sequences in replication. In contrast, deletion of ori-auxiliary sequences reduced the efficiency of ori-specific, T-antigen-dependent DNA unwinding in cell extracts at least 15-fold. With only purified T antigen in the presence of topoisomerase I to unwind purified DNA, ori-auxiliary sequences strongly facilitated T-antigen-dependent DNA conformational changes consistent with melting the first 50 base pairs. Under these conditions, ori-auxiliary sequences had little effect on the binding of T antigen to DNA. Therefore, a primary role of ori-auxiliary sequences in DNA replication is to facilitate T-antigen-dependent DNA unwinding after the T-antigen preinitiation complex is bound to ori-core.


1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.


1994 ◽  
Vol 14 (4) ◽  
pp. 2767-2776 ◽  
Author(s):  
K Moses ◽  
C Prives

Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.


1992 ◽  
Vol 12 (6) ◽  
pp. 2514-2524 ◽  
Author(s):  
Z S Guo ◽  
M L DePamphilis

The origins of DNA replication (ori) in simian virus 40 (SV40) and polyomavirus (Py) contain an auxiliary component (aux-2) composed of multiple transcription factor binding sites. To determine whether this component stimulated replication by binding specific transcription factors, aux-2 was replaced by synthetic oligonucleotides that bound a single transcription factor. Sp1 and T-antigen (T-ag) sites, which exist in the natural SV40 aux-2 sequence, provided approximately 75 and approximately 20%, respectively, of aux-2 activity when transfected into monkey cells. In cell extracts, only T-ag sites were active. AP1 binding sites could replace completely either SV40 or Py aux-2. Mutations that eliminated AP1 binding also eliminated AP1 stimulation of replication. Yeast GAL4 binding sites that strongly stimulated transcription in the presence of GAL4 proteins failed to stimulate SV40 DNA replication, although they did partially replace Py aux-2. Stimulation required the presence of proteins consisting of the GAL4 DNA binding domain fused to specific activation domains such as VP16 or c-Jun. These data demonstrate a clear role for transcription factors with specific activation domains in activating both SV40 and Py ori. However, no correlation was observed between the ability of specific proteins to stimulate promoter activity and their ability to stimulate origin activity. We propose that only transcription factors whose specific activation domains can interact with the T-ag initiation complex can stimulate SV40 and Py ori-core activity.


1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


Sign in / Sign up

Export Citation Format

Share Document