Nonlytic simian virus 40-specific 100K phosphoprotein is associated with anchorage-independent growth in simian virus 40-transformed and revertant mouse cell lines

1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.

1981 ◽  
Vol 1 (11) ◽  
pp. 994-1006 ◽  
Author(s):  
S Chen ◽  
M Verderame ◽  
A Lo ◽  
R Pollack

Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.


1989 ◽  
Vol 9 (7) ◽  
pp. 3093-3096 ◽  
Author(s):  
R L Radna ◽  
Y Caton ◽  
K K Jha ◽  
P Kaplan ◽  
G Li ◽  
...  

Simian virus 40 (SV40)-mediated transformation of human fibroblasts offers an experimental system for studying both carcinogenesis and cellular aging, since such transformants show the typical features of altered cellular growth but still have a limited life span in culture and undergo senescence. We have previously demonstrated (D. S. Neufeld, S. Ripley, A. Henderson, and H. L. Ozer, Mol. Cell. Biol. 7:2794-2802, 1987) that transformants generated with origin-defective mutants of SV40 show an increased frequency of overcoming senescence and becoming immortal. To clarify further the role of large T antigen, we have generated immortalized transformants by using origin-defective mutants of SV40 encoding a heat-labile large T antigen (tsA58 transformants). At a temperature permissive for large-T-antigen function (35 degrees C), the cell line AR5 had properties resembling those of cell lines transformed with wild-type SV40. However, the AR5 cells were unable to proliferate or form colonies at temperatures restrictive for large-T-antigen function (39 degrees C), demonstrating a continuous need for large T antigen even in immortalized human fibroblasts. Such immortal temperature-dependent transformants should be useful cell lines for the identification of other cellular or viral gene products that induce cell proliferation in human cells.


1985 ◽  
Vol 5 (11) ◽  
pp. 3231-3240 ◽  
Author(s):  
R D Gerard ◽  
Y Gluzman

Transformed monkey cell lines (CMT and BMT) that inducible express simian virus 40 (SV40) T antigen from the metallothionein promoter have been isolated and characterized. Immunoprecipitation of pulse-labeled T antigen demonstrates a 5- to 12-fold increase in the rate of synthesis on addition of heavy-metal inducers to the culture medium. Radioimmunoassay of cell extracts indicates the accumulation of three- to fourfold more total T antigen after 2 days of induction by comparison with uninduced controls. A direct correlation was found between the level of T-antigen synthesis and the extent of SV40 DNA replication in inducible cells. Inducible BMT cells expressing a low basal level of T antigen were efficiently transformed by a vector carrying the neomycin resistance marker and an SV40 origin of replication. These vector sequences were maintained in an episomal form in most G418-resistant cell lines examined and persisted even in the absence of biochemical selection. Extensive rearrangements were observed only if the vector contained bacterial plasmid sequences. Expression of a protein product under the control of the SV40 late promoter in such vectors was increased after heavy-metal-dependent amplification of the template. These results demonstrate the ability of BMT cells to maintain a cloned eucaryotic gene in an amplifiable episomal state.


1985 ◽  
Vol 5 (11) ◽  
pp. 3231-3240 ◽  
Author(s):  
R D Gerard ◽  
Y Gluzman

Transformed monkey cell lines (CMT and BMT) that inducible express simian virus 40 (SV40) T antigen from the metallothionein promoter have been isolated and characterized. Immunoprecipitation of pulse-labeled T antigen demonstrates a 5- to 12-fold increase in the rate of synthesis on addition of heavy-metal inducers to the culture medium. Radioimmunoassay of cell extracts indicates the accumulation of three- to fourfold more total T antigen after 2 days of induction by comparison with uninduced controls. A direct correlation was found between the level of T-antigen synthesis and the extent of SV40 DNA replication in inducible cells. Inducible BMT cells expressing a low basal level of T antigen were efficiently transformed by a vector carrying the neomycin resistance marker and an SV40 origin of replication. These vector sequences were maintained in an episomal form in most G418-resistant cell lines examined and persisted even in the absence of biochemical selection. Extensive rearrangements were observed only if the vector contained bacterial plasmid sequences. Expression of a protein product under the control of the SV40 late promoter in such vectors was increased after heavy-metal-dependent amplification of the template. These results demonstrate the ability of BMT cells to maintain a cloned eucaryotic gene in an amplifiable episomal state.


1989 ◽  
Vol 9 (7) ◽  
pp. 3093-3096
Author(s):  
R L Radna ◽  
Y Caton ◽  
K K Jha ◽  
P Kaplan ◽  
G Li ◽  
...  

Simian virus 40 (SV40)-mediated transformation of human fibroblasts offers an experimental system for studying both carcinogenesis and cellular aging, since such transformants show the typical features of altered cellular growth but still have a limited life span in culture and undergo senescence. We have previously demonstrated (D. S. Neufeld, S. Ripley, A. Henderson, and H. L. Ozer, Mol. Cell. Biol. 7:2794-2802, 1987) that transformants generated with origin-defective mutants of SV40 show an increased frequency of overcoming senescence and becoming immortal. To clarify further the role of large T antigen, we have generated immortalized transformants by using origin-defective mutants of SV40 encoding a heat-labile large T antigen (tsA58 transformants). At a temperature permissive for large-T-antigen function (35 degrees C), the cell line AR5 had properties resembling those of cell lines transformed with wild-type SV40. However, the AR5 cells were unable to proliferate or form colonies at temperatures restrictive for large-T-antigen function (39 degrees C), demonstrating a continuous need for large T antigen even in immortalized human fibroblasts. Such immortal temperature-dependent transformants should be useful cell lines for the identification of other cellular or viral gene products that induce cell proliferation in human cells.


1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


1990 ◽  
Vol 10 (1) ◽  
pp. 75-83
Author(s):  
Y Berko-Flint ◽  
S Karby ◽  
D Hassin ◽  
S Lavi

An in vitro system to study carcinogen-induced amplification in simian virus 40 (SV40)-transformed Chinese hamster (CO60) cells is described. SV40 amplification in this system resembled in many aspects the viral overreplication observed in drug-treated CO60 cells. Cytosolic extracts from N-methyl-N'-nitro-N-nitrosoguanidine-treated cells supported de novo DNA synthesis in the presence of excess exogenous T antigen and the SV40-containing plasmid pSVK1. The pattern of viral replication in these extracts was unique, since only the 2.4-kilobase-pair region spanning the origin was overreplicated, whereas distal sequences were not replicated significantly. Extracts from control cells supported only marginal levels of replication. In HeLa extracts, complete SV40 DNA molecules were replicated efficiently. The overreplication of the origin region in CO60 cell extracts was bidirectional and symmetrical. A fraction of the newly synthesized DNA molecules underwent a second round of replication, yielding MboI-sensitive fragments representing the 2.4-kilobase-pair region around the origin. The mechanisms controlling the amplification of the viral origin region, the nature of the cellular factors induced in the carcinogen-treated cells, and their putative association with general drug-induced SOS-like responses are discussed.


1992 ◽  
Vol 12 (6) ◽  
pp. 2514-2524 ◽  
Author(s):  
Z S Guo ◽  
M L DePamphilis

The origins of DNA replication (ori) in simian virus 40 (SV40) and polyomavirus (Py) contain an auxiliary component (aux-2) composed of multiple transcription factor binding sites. To determine whether this component stimulated replication by binding specific transcription factors, aux-2 was replaced by synthetic oligonucleotides that bound a single transcription factor. Sp1 and T-antigen (T-ag) sites, which exist in the natural SV40 aux-2 sequence, provided approximately 75 and approximately 20%, respectively, of aux-2 activity when transfected into monkey cells. In cell extracts, only T-ag sites were active. AP1 binding sites could replace completely either SV40 or Py aux-2. Mutations that eliminated AP1 binding also eliminated AP1 stimulation of replication. Yeast GAL4 binding sites that strongly stimulated transcription in the presence of GAL4 proteins failed to stimulate SV40 DNA replication, although they did partially replace Py aux-2. Stimulation required the presence of proteins consisting of the GAL4 DNA binding domain fused to specific activation domains such as VP16 or c-Jun. These data demonstrate a clear role for transcription factors with specific activation domains in activating both SV40 and Py ori. However, no correlation was observed between the ability of specific proteins to stimulate promoter activity and their ability to stimulate origin activity. We propose that only transcription factors whose specific activation domains can interact with the T-ag initiation complex can stimulate SV40 and Py ori-core activity.


1986 ◽  
Vol 6 (4) ◽  
pp. 1204-1217
Author(s):  
P S Jat ◽  
C L Cepko ◽  
R C Mulligan ◽  
P A Sharp

We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.


Sign in / Sign up

Export Citation Format

Share Document