Tumorigenicity of fibroblast lines expressing the adenovirus E1a, cellular p53, or normal c-myc genes

1986 ◽  
Vol 6 (1) ◽  
pp. 7-14
Author(s):  
A Kelekar ◽  
M D Cole

Cellular and viral oncogenes have been linked to the transformation of established cell lines in vitro, to the induction of tumors in vivo, and to the partial transformation or immortalization of primary cells. Based on the ability to cooperate with mutated ras oncogenes in the transformation of primary cells, the adenovirus E1a and cellular p53 genes have been assigned an immortalizing activity. It is demonstrated in this paper that the adenovirus type 5 E1a gene and simian virus 40 promoter-linked p53 cDNA are able to transform previously immortalized cells to a tumorigenic phenotype without a significant change in cell morphology. It is also shown that, when linked to a constitutive promoter, the normal mouse and human c-myc genes have the same transforming activity. Cells transformed by each of these oncogenes have an increased capacity to grow in the absence of growth factors and a limited anchorage-independent growth capability.

1986 ◽  
Vol 6 (1) ◽  
pp. 7-14 ◽  
Author(s):  
A Kelekar ◽  
M D Cole

Cellular and viral oncogenes have been linked to the transformation of established cell lines in vitro, to the induction of tumors in vivo, and to the partial transformation or immortalization of primary cells. Based on the ability to cooperate with mutated ras oncogenes in the transformation of primary cells, the adenovirus E1a and cellular p53 genes have been assigned an immortalizing activity. It is demonstrated in this paper that the adenovirus type 5 E1a gene and simian virus 40 promoter-linked p53 cDNA are able to transform previously immortalized cells to a tumorigenic phenotype without a significant change in cell morphology. It is also shown that, when linked to a constitutive promoter, the normal mouse and human c-myc genes have the same transforming activity. Cells transformed by each of these oncogenes have an increased capacity to grow in the absence of growth factors and a limited anchorage-independent growth capability.


1991 ◽  
Vol 11 (4) ◽  
pp. 2116-2124
Author(s):  
P Yaciuk ◽  
M C Carter ◽  
J M Pipas ◽  
E Moran

In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.


1991 ◽  
Vol 11 (4) ◽  
pp. 2116-2124 ◽  
Author(s):  
P Yaciuk ◽  
M C Carter ◽  
J M Pipas ◽  
E Moran

In this report we present evidence that simian virus 40 T antigen encodes a biological activity that is functionally equivalent to the transforming activity lost by deletion of the E1A p300-binding region. T-antigen constructs from which the pRb-binding region has been deleted are virtually unable to induce foci of transformed cells in a ras cooperation assay in primary baby rat kidney cells. Nevertheless, such a construct can cooperate with an E1A N-terminal deletion mutant, itself devoid of transforming activity, to induce foci in this assay. The heterologous trans-cooperating activity observed between E1A and T-antigen deletion products is as efficient as trans cooperation between mutants expressing individual E1A domains. The cooperating function can be impaired by a deletion near the N terminus of T antigen. Such a deletion impairs neither the p53-binding function nor the activity of the pRb-binding region.


1988 ◽  
Vol 8 (11) ◽  
pp. 4799-4807 ◽  
Author(s):  
L J Brunet ◽  
A J Berk

The adenovirus E1A proteins are essential for the normal temporal activation of transcription from every other adenoviral early promoter. High-level E1A expression in the absence of viral infection would facilitate biochemical studies of E1A-mediated transactivation. Toward this end, we introduced the adenovirus type 2 E1A gene under the control of the murine mammary tumor virus promoter into HeLa cells. Uninduced cells expressed little or no detectable E1A mRNA. Upon induction, mRNA levels accumulated to about 50% of the level observed in 293 cells. The level of E1A expression in these cells could be controlled by varying the concentration of the inducing glucocorticoid. Under these conditions of varying E1A concentrations, it was observed that activation of the E2, E3, and E4 promoters of H5dl312 initiated at the same E1A concentration and that transcription from each promoter increased as the E1A concentration increased. These results indicate that E1A-mediated transactivation is proportional to the concentration of E1A protein. E1A-dependent transcriptional stimulation of the E4 promoter was reproduced in an in vitro transcription system, demonstrating that expression of only the E1A proteins was sufficient to increase the transcriptional activity of nuclear extracts.


1986 ◽  
Vol 6 (7) ◽  
pp. 2317-2323
Author(s):  
D Zarkower ◽  
P Stephenson ◽  
M Sheets ◽  
M Wickens

The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.


1988 ◽  
Vol 8 (11) ◽  
pp. 4799-4807
Author(s):  
L J Brunet ◽  
A J Berk

The adenovirus E1A proteins are essential for the normal temporal activation of transcription from every other adenoviral early promoter. High-level E1A expression in the absence of viral infection would facilitate biochemical studies of E1A-mediated transactivation. Toward this end, we introduced the adenovirus type 2 E1A gene under the control of the murine mammary tumor virus promoter into HeLa cells. Uninduced cells expressed little or no detectable E1A mRNA. Upon induction, mRNA levels accumulated to about 50% of the level observed in 293 cells. The level of E1A expression in these cells could be controlled by varying the concentration of the inducing glucocorticoid. Under these conditions of varying E1A concentrations, it was observed that activation of the E2, E3, and E4 promoters of H5dl312 initiated at the same E1A concentration and that transcription from each promoter increased as the E1A concentration increased. These results indicate that E1A-mediated transactivation is proportional to the concentration of E1A protein. E1A-dependent transcriptional stimulation of the E4 promoter was reproduced in an in vitro transcription system, demonstrating that expression of only the E1A proteins was sufficient to increase the transcriptional activity of nuclear extracts.


2021 ◽  
Vol 23 (2) ◽  
pp. 108-116
Author(s):  
Rui-Fang Li ◽  
Guo-Xin Nan ◽  
Dan Wang ◽  
Chang Gao ◽  
Juan Yang ◽  
...  

1992 ◽  
Vol 12 (11) ◽  
pp. 5004-5014
Author(s):  
L C Lutter ◽  
L Judis ◽  
R F Paretti

Recently a model for eukaryotic transcriptional activation has been proposed in which histone hyperacetylation causes release of nucleosomal supercoils, and this unconstrained tension in turn stimulates transcription (V. G. Norton, B. S. Imai, P. Yau, and E. M. Bradbury, Cell 57:449-457, 1989; V. G. Norton, K. W. Marvin, P. Yau, and E. M. Bradbury, J. Biol. Chem. 265:19848-19852, 1990). These studies analyzed the effect of histone hyperacetylation on the change in topological linking number which occurs during nucleosome assembly in vitro. We have tested this model by determining the effect of histone hyperacetylation on the linking number change which occurs during assembly in vivo. We find that butyrate treatment of cells infected with simian virus 40 results in hyperacetylation of the histones of the extracted viral minichromosome as expected. However, the change in constrained supercoils of the minichromosome DNA is minimal, a result which is inconsistent with the proposed model. These results indicate that the proposed mechanism of transcriptional activation is unlikely to take place in the cell.


1984 ◽  
Vol 4 (1) ◽  
pp. 133-141
Author(s):  
J Brady ◽  
M Radonovich ◽  
M Thoren ◽  
G Das ◽  
N P Salzman

We have previously identified an 11-base DNA sequence, 5'-G-G-T-A-C-C-T-A-A-C-C-3' (simian virus 40 [SV40] map position 294 to 304), which is important in the control of SV40 late RNA expression in vitro and in vivo (Brady et al., Cell 31:625-633, 1982). We report here the identification of another domain of the SV40 late promoter. A series of mutants with deletions extending from SV40 map position 0 to 300 was prepared by nuclease BAL 31 treatment. The cloned templates were then analyzed for efficiency and accuracy of late SV40 RNA expression in the Manley in vitro transcription system. Our studies showed that, in addition to the promoter domain near map position 300, there are essential DNA sequences between nucleotide positions 74 and 95 that are required for efficient expression of late SV40 RNA. Included in this SV40 DNA sequence were two of the six GGGCGG SV40 repeat sequences and an 11-nucleotide segment which showed strong homology with the upstream sequences required for the efficient in vitro and in vivo expression of the histone H2A gene. This upstream promoter sequence supported transcription with the same efficiency even when it was moved 72 nucleotides closer to the major late cap site. In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription. Finally, we show that DNA sequences which control the specificity of RNA initiation at nucleotide 325 lie downstream of map position 294.


Sign in / Sign up

Export Citation Format

Share Document