cell nuclear extract
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

2001 ◽  
Vol 21 (19) ◽  
pp. 6598-6605 ◽  
Author(s):  
Eric D. Ross ◽  
Philip R. Hardwidge ◽  
L. James Maher

ABSTRACT The relative stiffness of naked DNA is evident from measured values of longitudinal persistence length (∼150 bp) and torsional persistence length (∼180 bp). These parameters predict that certain arrangements of eukaryotic transcription activator proteins in gene promoters should be much more effective than others in fostering protein-protein interactions with the basal RNA polymerase II transcription apparatus. Thus, if such interactions require some kind of DNA looping, DNA loop energies should depend sensitively on helical phasing of protein binding sites, loop size, and intrinsic DNA curvature within the loop. Using families of artificial transcription templates where these parameters were varied, we were surprised to find that the degree of transcription activation by arrays of Gal4-VP1 transcription activators in HeLa cell nuclear extract was sensitive only to the linear distance separating a basal promoter from an array of bound activators on DNA templates. We now examine the hypothesis that this unexpected result is due to factors in the extract that act to enhance apparent DNA flexibility. We demonstrate that HeLa cell nuclear extract is rich in a heat-resistant activity that dramatically enhances apparent DNA longitudinal and torsional flexibility. Recombinant mammalian high-mobility group 2 (HMG-2) protein can substitute for this activity. We propose that the abundance of HMG proteins in eukaryotic nuclei provides an environment in which DNA is made sufficiently flexible to remove many constraints on protein binding site arrangements that would otherwise limit efficient transcription activation to certain promoter geometries.


2001 ◽  
Vol 21 (14) ◽  
pp. 4604-4613 ◽  
Author(s):  
Gang Wang ◽  
Greg T. Cantin ◽  
Jennitte L. Stevens ◽  
Arnold J. Berk

ABSTRACT A number of mammalian multiprotein complexes containing homologs ofSaccharomyces cerevisiae Mediator subunits have been described recently. High-molecular-mass complexes (1 to 2 MDa) sharing several subunits but apparently differing in others include the TRAP/SMCC, NAT, DRIP, ARC, and human Mediator complexes. Smaller multiprotein complexes (∼500 to 700 kDa), including the murine Mediator, CRSP, and PC2, have also been described that contain subsets of subunits of the larger complexes. To evaluate whether these different multiprotein complexes exist in vivo in a single form or in multiple different forms, HeLa cell nuclear extract was directly resolved over a Superose 6 gel filtration column. Immunoblotting of column fractions using antisera specific for several Mediator subunits revealed one major size class of high-molecular-mass (∼2-MDa) complexes containing multiple mammalian Mediator subunits. No peak was apparent at ∼500 to 700 kDa, indicating that either the smaller complexes reported are much less abundant than the higher-molecular-mass complexes or they are subcomplexes generated by dissociation of larger complexes during purification. Quantitative immunoblotting indicated that there are about 3 × 105to 6 × 105 molecules of hSur2 Mediator subunit per HeLa cell, i.e., the same order of magnitude as RNA polymerase II and general transcription factors. Immunoprecipitation of the ∼2-MDa fraction with anti-Cdk8 antibody indicated that at least two classes of Mediator complexes occur, one containing CDK8 and cyclin C and one lacking this CDK-cyclin pair. The ∼2-MDa complexes stimulated activated transcription in vitro, whereas a 150-kDa fraction containing a subset of Mediator subunits inhibited activated transcription.


2000 ◽  
Vol 14 (4) ◽  
pp. 403-413 ◽  
Author(s):  
Stéphan Vagner ◽  
Christine Vagner ◽  
Iain W. Mattaj

Although it has been established that the processing factors involved in pre-mRNA splicing and 3′-end formation can influence each other positively, the molecular basis of this coupling interaction was not known. Stimulation of pre-mRNA splicing by an adjacentcis-linked cleavage and polyadenylation site in HeLa cell nuclear extract is shown to occur at an early step in splicing, the binding of U2AF 65 to the pyrimidine tract of the intron 3′ splice site. The carboxyl terminus of poly(A) polymerase (PAP) previously has been implicated indirectly in the coupling process. We demonstrate that a fusion protein containing the 20 carboxy-terminal amino acids of PAP, when tethered downstream of an intron, increases splicing efficiency and, like the entire 3′-end formation machinery, stimulates U2AF 65 binding to the intron. The carboxy-terminal domain of PAP makes a direct and specific interaction with residues 17–47 of U2AF 65, implicating this interaction in the coupling of splicing and 3′-end formation.


1997 ◽  
Vol 44 (2) ◽  
pp. 259-274 ◽  
Author(s):  
P Nuc ◽  
K Nuc ◽  
Z Szweykowska-Kulińska ◽  
J Pawełkiewicz

A nuclear DNA fragment (7.8 kb) from yellow lupin (L. luteus) was sequenced and shown to contain tRNA(Gly) (GGC) genes and tRNAGly (GGC) pseudogenes organized in three tandemly repeated units: of 2565 bp and 2564 bp, and one, truncated from its 3' end, of 1212 bp. Each unit contains an identical pair of a tRNA(Gly) gene and a pseudogene, both having the same polarity. The nucleotide sequence of the gene appears colinear to L. luteus cytoplasmic tRNA(Gly) (GGC) primary structure. All three genes are efficiently transcribed in HeLa-cell nuclear extract giving two primary transcripts. The main, longer primary transcripts have each an extremely long 3' trailer of about 100 nucleotides, the structure of which is specific only for tRNAGly genes and pseudogenes (80% homology) of the studied tandem (but not for other tRNA(Gly) genes of the yellow lupin genome) as it has been shown by Southern hybridization. This distinctive feature allowed to isolate putative tRNAGly precursor(s) encoded by at least one of the three tRNA(Gly) (GGC) genes from L. luteus seedlings.


1997 ◽  
Vol 17 (5) ◽  
pp. 2587-2597 ◽  
Author(s):  
C Gamberi ◽  
E Izaurralde ◽  
C Beisel ◽  
I W Mattaj

hnRNP F was identified in a screen for proteins that interact with human CBP80 and CBP20, the components of the nuclear cap-binding complex (CBC). In vitro interaction studies showed that hnRNP F can bind to both CBP20 and CBP80 individually. hnRNP F and CBC bind independently to RNA, but hnRNP F binds preferentially to CBC-RNA complexes rather than to naked RNA. The hnRNP H protein, which is 78% identical to hnRNP F and also interacts with both CBP80 and CBP20 in vitro, does not discriminate between naked RNA and CBC-RNA complexes, showing that this effect is specific. Depletion of hnRNP F from HeLa cell nuclear extract decreases the efficiency of pre-mRNA splicing, a defect which can be partially compensated by addition of recombinant hnRNP F. Thus, hnRNP F is required for efficient pre-mRNA splicing in vitro and may participate in the effect of CBC on pre-mRNA splicing.


1996 ◽  
Vol 16 (5) ◽  
pp. 2204-2213 ◽  
Author(s):  
G Stumpf ◽  
A Goppelt ◽  
H Domdey

Various signal motifs that are required for efficient pre-mRNA 3'-end formation in the yeast Saccharomyces cerevisiae have been reported. None of these known signal sequences appears to be of the same general importance as is the mammalian AAUAAA motif. To establish the importance of yeast pre-mRNA termini in 3'-end formation, the ends of a pre-mRNA transcript synthesized in vitro were ligated before incubation in a yeast whole-cell extract. Such covalently closed circular RNAs were not cleaved at their poly(A) sites. Interestingly, pseudocircular RNAs with complementary 3'- and 5'-terminal sequences allowing the formation of panhandle structures were also resistant to cleavage. However, 3'-end processing was impeded neither by terminal hairpins at either or at both ends nor by RNA oligonucleotides complementary to either or both ends of a linear pre-mRNA. Intriguingly mammalian pseudocircular pre-mRNAs also were not cleaved at their poly(A) sites when incubated in a HeLa cell nuclear extract. These results provide evidence for the general importance of RNA topology in the formation of an active 3'-end processing complex in S. cerevisiae and higher eukaryotes. The possibility of a torus-shaped factor involved in 3'-end formation is discussed.


1991 ◽  
Vol 11 (7) ◽  
pp. 3425-3431
Author(s):  
P Delannoy ◽  
M H Caruthers

Mild heat treatment of HeLa cell nuclear extracts (NE) selectively inhibits pre-mRNA splicing. Heat-inactivated extracts can be complemented by a small amount of untreated NE. Utilizing this complementation assay and a combination of ion-exchange, affinity, and hydrophobic chromatography, a heat reversal factor (HRF) was purified from NE that is required to rescue pre-mRNA splicing from a heat-inactivated extract. This activity in its most purified form consistently copurified in a fraction containing two 70-kDa proteins and a minor polypeptide of approximately 100 kDa. It was free of the major small nuclear RNAs, sensitive to protease, and required to rescue spliceosome formation from a heat-inactivated nuclear extract. These results suggest that this factor is a protein that may be an important component in pre-mRNA splicing, or alternatively, it may be involved in renaturation of a heat-sensitive splicing factor.


Sign in / Sign up

Export Citation Format

Share Document