The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro

1986 ◽  
Vol 6 (7) ◽  
pp. 2317-2323
Author(s):  
D Zarkower ◽  
P Stephenson ◽  
M Sheets ◽  
M Wickens

The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.

1986 ◽  
Vol 6 (7) ◽  
pp. 2317-2323 ◽  
Author(s):  
D Zarkower ◽  
P Stephenson ◽  
M Sheets ◽  
M Wickens

The sequence AAUAAA is found near the polyadenylation site of eucaryotic mRNAs. This sequence is required for accurate and efficient cleavage and polyadenylation of pre-mRNAs in vivo. In this study we show that synthetic simian virus 40 late pre-mRNAs are cleaved and polyadenylated in vitro in a HeLa cell nuclear extract, and that cleavage in vitro is abolished by each of four different single-base changes in AAUAAA. In this same extract, precleaved RNAs (RNAs with 3' termini at the polyadenylation site) are efficiently polyadenylated. This in vitro polyadenylation reaction also requires the AAUAAA sequence.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503 ◽  
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


1987 ◽  
Vol 7 (1) ◽  
pp. 495-503
Author(s):  
L C Ryner ◽  
J L Manley

Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.


1989 ◽  
Vol 9 (1) ◽  
pp. 193-203
Author(s):  
G Christofori ◽  
W Keller

We have partially purified a poly(A) polymerase (PAP) from HeLa cell nuclear extract which is involved in the 3'-end formation of polyadenylated mRNA. PAP had a molecular weight of approximately 50 to 60 kilodaltons. In the presence of manganese ions, PAP was able to polyadenylate RNA nonspecifically. However, in the presence of magnesium ions PAP required the addition of a cleavage and polyadenylation factor to specifically polyadenylate pre-mRNAs that contain an intact AAUAAA sequence and end at the poly(A) addition site (precleaved RNA substrates). The purified fraction containing PAP was also required in combination with a cleavage and polyadenylation factor and a cleavage factor for the correct cleavage at the poly(A) site of pre-mRNAs. Since the two activities of the PAP fractions, PAP and cleavage activity, could not be separated by extensive purification, we concluded that the two activities are contained in a single component, a PAP that is also required for the specific cleavage preceding the polyadenylation of pre-mRNA.


1985 ◽  
Vol 5 (8) ◽  
pp. 2051-2060
Author(s):  
B W Stillman ◽  
Y Gluzman

Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules.


1988 ◽  
Vol 8 (4) ◽  
pp. 1839-1841 ◽  
Author(s):  
T L Green ◽  
R P Hart

Previous studies have shown that a sequence element downstream of the poly(A) addition site is required for efficient cleavage in vivo. We tested a group of downstream element point mutations in an in vitro reaction using HeLa cell nuclear extract as a source of cleavage activity. In close agreement with earlier studies (M. A. McDevitt, R. P. Hart, W. W. Wong, and J. R. Nevins, EMBO J. 5:2907-2913, 1986), a downstream element from the adenovirus E2a gene directed a higher level of cleavage activity than one from the simian virus 40 early gene. Furthermore, a single-base change in the downstream element could result in a decrease in cleavage activity of about 50-fold. That these mutations have similar effects in vivo and in vitro indicates that the HeLa cell nuclear extract system contains all of the factors required to study the mechanism of sequence recognition.


1986 ◽  
Vol 6 (12) ◽  
pp. 4734-4741 ◽  
Author(s):  
A O Sperry ◽  
S M Berget

Exogenous RNA containing the simian virus 40 early polyadenylation site was efficiently and accurately polyadenylated in in vitro nuclear extracts. Correct cleavage required ATP. In the absence of ATP, nonpoly(A)+ products accumulated which were 18 to 20 nucleotides longer than the RNA generated by correct cleavage; the longer RNA terminated adjacent to the downstream TG element required for polyadenylation. In the presence of ATP analogs, alternate cleavage was not observed; instead, correct cleavage without poly(A) addition occurred. ATP-independent cleavage of simian virus 40 early RNA had many of the same properties as correct cleavage including requirements for an intact AAUAAA element, a proximal 3' terminus, and extract small nuclear ribonucleoproteins. This similarity in reaction parameters suggested that ATP-independent cleavage is an activity of the normal polyadenylation machinery. The ATP-independent cleavage product, however, did not behave as an intermediate in polyadenylation. The alternate RNA did not preferentially chase into correctly cleaved material upon readdition of ATP; instead, poly(A) was added to the 3' terminus of the cleaved RNA during a chase. Purified ATP-independent cleavage RNA, however, was a substrate for correct cleavage when reintroduced into the nuclear extract. Thus, alternate cleavage of polyadenylation sites adjacent to a required downstream sequence element is directed by the polyadenylation machinery in the absence of ATP.


2001 ◽  
Vol 21 (14) ◽  
pp. 4604-4613 ◽  
Author(s):  
Gang Wang ◽  
Greg T. Cantin ◽  
Jennitte L. Stevens ◽  
Arnold J. Berk

ABSTRACT A number of mammalian multiprotein complexes containing homologs ofSaccharomyces cerevisiae Mediator subunits have been described recently. High-molecular-mass complexes (1 to 2 MDa) sharing several subunits but apparently differing in others include the TRAP/SMCC, NAT, DRIP, ARC, and human Mediator complexes. Smaller multiprotein complexes (∼500 to 700 kDa), including the murine Mediator, CRSP, and PC2, have also been described that contain subsets of subunits of the larger complexes. To evaluate whether these different multiprotein complexes exist in vivo in a single form or in multiple different forms, HeLa cell nuclear extract was directly resolved over a Superose 6 gel filtration column. Immunoblotting of column fractions using antisera specific for several Mediator subunits revealed one major size class of high-molecular-mass (∼2-MDa) complexes containing multiple mammalian Mediator subunits. No peak was apparent at ∼500 to 700 kDa, indicating that either the smaller complexes reported are much less abundant than the higher-molecular-mass complexes or they are subcomplexes generated by dissociation of larger complexes during purification. Quantitative immunoblotting indicated that there are about 3 × 105to 6 × 105 molecules of hSur2 Mediator subunit per HeLa cell, i.e., the same order of magnitude as RNA polymerase II and general transcription factors. Immunoprecipitation of the ∼2-MDa fraction with anti-Cdk8 antibody indicated that at least two classes of Mediator complexes occur, one containing CDK8 and cyclin C and one lacking this CDK-cyclin pair. The ∼2-MDa complexes stimulated activated transcription in vitro, whereas a 150-kDa fraction containing a subset of Mediator subunits inhibited activated transcription.


1985 ◽  
Vol 5 (8) ◽  
pp. 2051-2060 ◽  
Author(s):  
B W Stillman ◽  
Y Gluzman

Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules.


1987 ◽  
Vol 7 (4) ◽  
pp. 1518-1529 ◽  
Author(s):  
M D Sheets ◽  
P Stephenson ◽  
M P Wickens

Formation of mRNA 3' termini involves cleavage of an mRNA precursor and polyadenylation of the newly formed end. Cleavage of simian virus 40 late pre-mRNA in a crude nuclear extract generated two RNAs, 5' and 3' half-molecules. These RNAs were unmodified and linear. The 5' half-molecule contained sequences upstream but not downstream of the poly(A) site and ended in a 3'-terminal hydroxyl. The 3' half-molecules comprised a family of RNAs, each of which contains only sequences downstream of the poly(A) site, and ends in a 5'-terminal phosphate. These RNAs differed only in the locations of their 5' terminus. The 3' terminus of the 5' half-molecule was the adenosine 10 nucleotides downstream of AAUAAA, at the +1 position. The 5' terminus of the longest 3' half-molecule was at +2. Thus, these two RNAs contain every nucleoside and phosphate of the precursor. The existence of these half-molecules demonstrates that endonucleolytic cleavage occurs near the poly(A) site. 5' half-molecules generated in the presence of EDTA (which blocks polyadenylation, but not cleavage) ended at the adenosine at position +1 of the precursor. When incubated in the extract under suitable conditions, they became polyadenylated. 5' half-molecules formed in 3'-dATP-containing reactions contained a single 3'-deoxyadenosine (cordycepin) residue added onto the +1 adenosine and were poor polyadenylation substrates. We infer that the +1 adenosine of the precursor becomes the first A of the poly(A) tract and provides a 3' hydroxyl group to which poly(A) is added posttranscriptionally.


Sign in / Sign up

Export Citation Format

Share Document