scholarly journals Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product.

1988 ◽  
Vol 8 (10) ◽  
pp. 4098-4109 ◽  
Author(s):  
K A Eakle ◽  
M Bernstein ◽  
S D Emr

SEC18 gene function is required for secretory protein transport between the endoplasmic reticulum (ER) and the Golgi complex. We cloned the SEC18 gene by complementation of the sec18-1 mutation. Gene disruption has shown that SEC18 is essential for yeast cell growth. Sequence analysis of the gene revealed a 2,271-base-pair open reading frame which could code for a protein of 83.9 kilodaltons. The predicted protein sequence showed no significant similarity to other known protein sequences. In vitro transcription and translation of SEC18 led to the synthesis of two proteins of approximately 84 and 82 kilodaltons. Antisera raised against a Sec18-beta-galactosidase fusion protein also detected two proteins (collectively referred to as Sec18p) in extracts of 35S-labeled yeast cells identical in size to those seen by in vitro translation. Mapping of the 5' end of the SEC18 mRNA revealed only one major start site for transcription, which indicates that the multiple forms of Sec18p do not arise from mRNAs with different 5' ends. Results of pulse-chase experiments indicated that the two forms of Sec18p are not the result of posttranslational processing. We suggest that translation initiating at different in-frame AUG start codons is likely to account for the presence of two forms of Sec18p. Hydrophobicity analysis indicated that the proteins were hydrophilic in nature and lacked any region that would be predicted to serve as a signal sequence or transmembrane anchor. Although potential sites for N-linked glycosylation were present in the Sec18p sequence, the sizes of the in vivo SEC18 gene products were unaffected by the drug tunicamycin, indicating that Sec18p does not enter the secretory pathway. These results suggest that Sec18p resides in the cell cytoplasm. While preliminary cell fractionation studies showed that Sec18p is not associated with the ER or Golgi complex, association with a 100,000 x g pellet fraction was observed. This suggests that Sec18p may bind transiently to small vesicles such as those presumed to participate in secretory protein transport between ER and the Golgi complex.

1988 ◽  
Vol 8 (10) ◽  
pp. 4098-4109
Author(s):  
K A Eakle ◽  
M Bernstein ◽  
S D Emr

SEC18 gene function is required for secretory protein transport between the endoplasmic reticulum (ER) and the Golgi complex. We cloned the SEC18 gene by complementation of the sec18-1 mutation. Gene disruption has shown that SEC18 is essential for yeast cell growth. Sequence analysis of the gene revealed a 2,271-base-pair open reading frame which could code for a protein of 83.9 kilodaltons. The predicted protein sequence showed no significant similarity to other known protein sequences. In vitro transcription and translation of SEC18 led to the synthesis of two proteins of approximately 84 and 82 kilodaltons. Antisera raised against a Sec18-beta-galactosidase fusion protein also detected two proteins (collectively referred to as Sec18p) in extracts of 35S-labeled yeast cells identical in size to those seen by in vitro translation. Mapping of the 5' end of the SEC18 mRNA revealed only one major start site for transcription, which indicates that the multiple forms of Sec18p do not arise from mRNAs with different 5' ends. Results of pulse-chase experiments indicated that the two forms of Sec18p are not the result of posttranslational processing. We suggest that translation initiating at different in-frame AUG start codons is likely to account for the presence of two forms of Sec18p. Hydrophobicity analysis indicated that the proteins were hydrophilic in nature and lacked any region that would be predicted to serve as a signal sequence or transmembrane anchor. Although potential sites for N-linked glycosylation were present in the Sec18p sequence, the sizes of the in vivo SEC18 gene products were unaffected by the drug tunicamycin, indicating that Sec18p does not enter the secretory pathway. These results suggest that Sec18p resides in the cell cytoplasm. While preliminary cell fractionation studies showed that Sec18p is not associated with the ER or Golgi complex, association with a 100,000 x g pellet fraction was observed. This suggests that Sec18p may bind transiently to small vesicles such as those presumed to participate in secretory protein transport between ER and the Golgi complex.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391 ◽  
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


2003 ◽  
Vol 384 (1) ◽  
pp. 175-182 ◽  
Author(s):  
J. Müllegger ◽  
A. Rustom ◽  
G. Kreil ◽  
H.-H. Gerdes ◽  
G. Lepperdinger

AbstractHyaluronan is the sole glycosaminoglycan whose biosynthesis takes place directly at the plasma membrane. The mechanism by which hyaluronan synthase (HAS) becomes inserted there, as well as the question of how the enzyme discriminates between particular membrane species in polarized cells, are largely unknown. In vitro translation of HAS suggested that the nascent protein becomes stabilized in the presence of microsomal membranes, but would not insert spontaneously into membranes after being translated in the absence of those. We therefore monitored the membrane attachment of enzymatically active fusion proteins consisting of Xenopus HAS1 and green fluorescent protein shortly after de novo synthesis in Vero cells. Our data strongly suggest that HAS proteins are directly translated on the ER membrane without exhibiting an N-terminal signal sequence. From there the inactive protein is transferred to the plasma membrane via the secretory pathway. For unknown reasons, HAS inserted into membranes other than the plasma membrane remains inactive.


1991 ◽  
Vol 112 (5) ◽  
pp. 809-821 ◽  
Author(s):  
R N Thrift ◽  
D W Andrews ◽  
P Walter ◽  
A E Johnson

The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like glycoprotein. These results show that the transmembrane segment of a nascent membrane protein is located adjacent to the mp39-like glycoprotein and other ER proteins during the integration process, and that at least a portion of the nascent chain remains in close proximity to these ER proteins until translation has been completed.


2021 ◽  
Author(s):  
Marcel van Lith ◽  
Marie Anne Pringle ◽  
Bethany Fleming ◽  
Giorgia Gaeta ◽  
Jisu Im ◽  
...  

N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here we use an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could also be mimicked by the addition of a membrane impermeable reducing agent. The identified hypoglycosylated acceptor site is adjacent to a cysteine involved in a short range disulfide, which has been shown to be dependent on the STT3B-containing oligosaccharyl transferase. We also show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A and STT3B-dependent glycosylation. Our results provide further insight into the important role of the ER redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.


1988 ◽  
Vol 107 (4) ◽  
pp. 1465-1476 ◽  
Author(s):  
H Ruohola ◽  
A K Kabcenell ◽  
S Ferro-Novick

Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective.


1998 ◽  
Vol 111 (22) ◽  
pp. 3427-3436 ◽  
Author(s):  
S. Monier ◽  
P. Chardin ◽  
S. Robineau ◽  
B. Goud

The small GTPase ARF1 is a key regulator of intracellular membrane traffic. In its active, GTP-bound form, ARF1 is associated with Golgi membranes and promotes the recruitment of the cytosolic coat protein complex, which will result in membrane budding and vesicle formation. ARNO (ARF nucleotide site opener) has been shown to act in vitro as a GTP exchange factor for ARF1. Here, we have investigated the function of ARNO in vivo. By immunofluorescence and cell fractionation, ARNO was found to be mostly cytosolic in HeLa cells. Its overexpression led to a strong inhibition of the secretion of SEAP (secreted form of alkaline phosphatase). Newly synthesized SEAP failed to acquire endoglycosidase H resistance, indicating a block in the early secretory pathway. This effect on secretion was accompanied by a disassembly of the Golgi complex and a redistribution of Golgi resident proteins into the endoplasmic reticulum (ER). On the other hand, ARNO overexpression did not affect the early endocytic pathway. These results show that ARNO functions in vivo in Golgi to ER transport. Its behavior is then consistent with ARNO being an exchange factor for ARF1.


1991 ◽  
Vol 2 (3) ◽  
pp. 211-218 ◽  
Author(s):  
D L Glick ◽  
M R Hellmich ◽  
S Beushausen ◽  
P Tempst ◽  
H Bayley ◽  
...  

An egg-specific NADase has been purified from the ovotestis of the marine mollusk Aplysia californica. The enzyme converts NAD to cyclic ADP-ribose (cADPR), which is a potent mobilizer of Ca2+. It is likely that the NADase serves to raise Ca2+ levels in the ova at appropriate times. A 1.2-kb cDNA clone containing the complete coding sequence of the native NADase protein was isolated from an unamplified ovotestis cDNA library and represents the first cloning of an NADase that generates cADPR. In vitro translation studies indicate that the protein initially has a signal sequence that may help to target it to discrete vesicles of the ova in which it is found. There are 12 cysteines in the open reading frame, two of these being in the signal sequence. No part of the sequence has significant similarity to other proteins or known nucleotide binding site consensus sequences. Northern blot analysis of poly(A)+ selected ovotestis RNA has identified an NADase mRNA of 1.85 kb. In situ hybridization analysis of cryostat sections from ovotestis has shown that the NADase mRNA is restricted to the immature ova, although the NADase protein is present in both immature and mature eggs.


2020 ◽  
Author(s):  
Jason C. Casler ◽  
Allison L. Zajac ◽  
Fernando M. Valbuena ◽  
Daniela Sparvoli ◽  
Okunola Jeyifous ◽  
...  

AbstractMembrane traffic can be studied by imaging a cargo protein as it transits the secretory pathway. The best tools for this purpose initially block exit of the secretory cargo from the endoplasmic reticulum (ER), and then release the block to generate a cargo wave. However, previously developed regulatable secretory cargoes are often tricky to use or specific for a single model organism. To overcome these hurdles for budding yeast, we recently optimized an artificial fluorescent secretory protein that exits the ER with the aid of the Erv29 cargo receptor, which is homologous to mammalian Surf4. The fluorescent secretory protein forms aggregates in the ER lumen and can be rapidly disaggregated by addition of a ligand to generate a nearly synchronized cargo wave. Here we term this regulatable secretory protein ESCargo (Erv29/Surf4-dependent Secretory Cargo) and demonstrate its utility not only in yeast cells, but also in cultured mammalian cells, Drosophila cells, and the ciliate Tetrahymena thermophila. Kinetic studies indicate that rapid transport out of the ER requires recognition by Erv29/Surf4. By choosing an appropriate ER signal sequence and expression vector, this simple technology can likely be used with many model organisms.


Sign in / Sign up

Export Citation Format

Share Document