‘Piggy-Back’ Transport of Xenopus Hyaluronan Synthase (XHAS1) via the Secretory Pathway to the Plasma Membrane

2003 ◽  
Vol 384 (1) ◽  
pp. 175-182 ◽  
Author(s):  
J. Müllegger ◽  
A. Rustom ◽  
G. Kreil ◽  
H.-H. Gerdes ◽  
G. Lepperdinger

AbstractHyaluronan is the sole glycosaminoglycan whose biosynthesis takes place directly at the plasma membrane. The mechanism by which hyaluronan synthase (HAS) becomes inserted there, as well as the question of how the enzyme discriminates between particular membrane species in polarized cells, are largely unknown. In vitro translation of HAS suggested that the nascent protein becomes stabilized in the presence of microsomal membranes, but would not insert spontaneously into membranes after being translated in the absence of those. We therefore monitored the membrane attachment of enzymatically active fusion proteins consisting of Xenopus HAS1 and green fluorescent protein shortly after de novo synthesis in Vero cells. Our data strongly suggest that HAS proteins are directly translated on the ER membrane without exhibiting an N-terminal signal sequence. From there the inactive protein is transferred to the plasma membrane via the secretory pathway. For unknown reasons, HAS inserted into membranes other than the plasma membrane remains inactive.

1988 ◽  
Vol 8 (10) ◽  
pp. 4098-4109 ◽  
Author(s):  
K A Eakle ◽  
M Bernstein ◽  
S D Emr

SEC18 gene function is required for secretory protein transport between the endoplasmic reticulum (ER) and the Golgi complex. We cloned the SEC18 gene by complementation of the sec18-1 mutation. Gene disruption has shown that SEC18 is essential for yeast cell growth. Sequence analysis of the gene revealed a 2,271-base-pair open reading frame which could code for a protein of 83.9 kilodaltons. The predicted protein sequence showed no significant similarity to other known protein sequences. In vitro transcription and translation of SEC18 led to the synthesis of two proteins of approximately 84 and 82 kilodaltons. Antisera raised against a Sec18-beta-galactosidase fusion protein also detected two proteins (collectively referred to as Sec18p) in extracts of 35S-labeled yeast cells identical in size to those seen by in vitro translation. Mapping of the 5' end of the SEC18 mRNA revealed only one major start site for transcription, which indicates that the multiple forms of Sec18p do not arise from mRNAs with different 5' ends. Results of pulse-chase experiments indicated that the two forms of Sec18p are not the result of posttranslational processing. We suggest that translation initiating at different in-frame AUG start codons is likely to account for the presence of two forms of Sec18p. Hydrophobicity analysis indicated that the proteins were hydrophilic in nature and lacked any region that would be predicted to serve as a signal sequence or transmembrane anchor. Although potential sites for N-linked glycosylation were present in the Sec18p sequence, the sizes of the in vivo SEC18 gene products were unaffected by the drug tunicamycin, indicating that Sec18p does not enter the secretory pathway. These results suggest that Sec18p resides in the cell cytoplasm. While preliminary cell fractionation studies showed that Sec18p is not associated with the ER or Golgi complex, association with a 100,000 x g pellet fraction was observed. This suggests that Sec18p may bind transiently to small vesicles such as those presumed to participate in secretory protein transport between ER and the Golgi complex.


1994 ◽  
Vol 107 (12) ◽  
pp. 3623-3633 ◽  
Author(s):  
J. Jantti ◽  
S. Keranen ◽  
J. Toikkanen ◽  
E. Kuismanen ◽  
C. Ehnholm ◽  
...  

Proteins of the syntaxin family are suggested to play a key role in determining the specificity of intracellular membrane fusion events. They belong to the class of membrane proteins which are devoid of N-terminal signal sequence and have a C-terminal membrane anchor. Sso2p is a syntaxin homologue involved in the Golgi to plasma membrane vesicular transport in yeast. The protein was transiently expressed in BHK-21 cells using the Semliki Forest virus vector, and its localization and mode of membrane insertion were studied. By immunofluorescence and immuno-EM we show that Sso2p is transported to its final location, the plasma membrane, along the biosynthetic pathway. Experiments with synchronized Sso2p synthesis or expression of the protein in the presence of brefeldin A indicate endoplasmic reticulum as the initial membrane insertion site. During a 20 degrees C temperature block Sso2p accumulated in the Golgi complex and was chased to the plasma membrane by a subsequent 37 degrees C incubation in the presence of cycloheximide. The in vitro translated protein was able to associate with dog pancreatic microsomes post-translationally. A truncated form of Sso2p lacking the putative membrane anchor was used to show that this sequence is necessary for the membrane insertion in vivo and in vitro. The results show that this syntaxin-like protein does not directly associate with its target membrane but uses the secretory pathway to reach its cellular location, raising interesting questions concerning regulation of SNARE-type protein function.


1986 ◽  
Vol 103 (6) ◽  
pp. 2263-2272 ◽  
Author(s):  
E M Eskridge ◽  
D Shields

To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.


1988 ◽  
Vol 8 (10) ◽  
pp. 4098-4109
Author(s):  
K A Eakle ◽  
M Bernstein ◽  
S D Emr

SEC18 gene function is required for secretory protein transport between the endoplasmic reticulum (ER) and the Golgi complex. We cloned the SEC18 gene by complementation of the sec18-1 mutation. Gene disruption has shown that SEC18 is essential for yeast cell growth. Sequence analysis of the gene revealed a 2,271-base-pair open reading frame which could code for a protein of 83.9 kilodaltons. The predicted protein sequence showed no significant similarity to other known protein sequences. In vitro transcription and translation of SEC18 led to the synthesis of two proteins of approximately 84 and 82 kilodaltons. Antisera raised against a Sec18-beta-galactosidase fusion protein also detected two proteins (collectively referred to as Sec18p) in extracts of 35S-labeled yeast cells identical in size to those seen by in vitro translation. Mapping of the 5' end of the SEC18 mRNA revealed only one major start site for transcription, which indicates that the multiple forms of Sec18p do not arise from mRNAs with different 5' ends. Results of pulse-chase experiments indicated that the two forms of Sec18p are not the result of posttranslational processing. We suggest that translation initiating at different in-frame AUG start codons is likely to account for the presence of two forms of Sec18p. Hydrophobicity analysis indicated that the proteins were hydrophilic in nature and lacked any region that would be predicted to serve as a signal sequence or transmembrane anchor. Although potential sites for N-linked glycosylation were present in the Sec18p sequence, the sizes of the in vivo SEC18 gene products were unaffected by the drug tunicamycin, indicating that Sec18p does not enter the secretory pathway. These results suggest that Sec18p resides in the cell cytoplasm. While preliminary cell fractionation studies showed that Sec18p is not associated with the ER or Golgi complex, association with a 100,000 x g pellet fraction was observed. This suggests that Sec18p may bind transiently to small vesicles such as those presumed to participate in secretory protein transport between ER and the Golgi complex.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2767-2777 ◽  
Author(s):  
J.L. Villano ◽  
F.N. Katz

Genes capable of translating positional information into regulated growth lie at the heart of morphogenesis, yet few genes with this function have been identified. Mutants in the Drosophila four-jointed (fj) gene show reduced growth and altered differentiation only within restricted sectors of the proximal-distal (PD) axis in the leg and wing, thus fj is a candidate for a gene with this coordination function. Consistent with a position-sensitive role, we show that fj is expressed in a regional pattern in the developing leg, wing, eye and optic lobe. The fj gene encodes a novel type II membrane glycoprotein. When the cDNA is translated in an in vitro translation system in the presence of exogenous microsomal membranes, the intralumenal portion of some of the molecules is cleaved, yielding a secreted C-terminal fragment. We propose that fj encodes a secreted signal that functions as a positive regulator of regional growth and differentiation along the PD axis of the imaginal discs.


1987 ◽  
Vol 65 (10) ◽  
pp. 921-924 ◽  
Author(s):  
Gilles Paradis ◽  
Jean Y. Dubé ◽  
Pierre Chapdelaine ◽  
Roland R. Tremblay

Poly(A)+ RNA was isolated from human prostatic tissue and translated in vitro in a rabbit reticulocyte lysate translation assay. Acid phosphatase labeled with [35S]methionine was immunoprecipitated with an antibody against seminal plasma acid phosphatase. Two-dimensional polyacrylamide gel electrophoresis of the immunoprecipitate, followed by fluorography, revealed the presence of two spots (one major and one minor), both having a molecular mass of 43 kilodaltons (kDa) and an isoelectric point higher than mature acid phosphatase. Addition of canine pancreatic membranes to the translation assay resulted in the formation of four immunoprecipitable spots with molecular masses ranging from 43 to 49 kDa on one-dimensional gels. These spots probably represent acid phosphatases containing one to four core sugar groups, since after the addition of endoglycosidase H the molecular mass heterogeneity was abolished and we observed only one major band with a molecular mass (41 kDa) slightly lower than the ones of the primary translation product. These results suggest that human prostatic acid phosphatases are synthesized as two 43-kDa preproteins, which are further processed to 41-kDa proteins by removal of their signal peptide. Heterogeneity of the native protein arises mostly from glycosylation at four sites and not from differences in the amino acid sequence of the various forms.


1999 ◽  
Vol 73 (4) ◽  
pp. 3430-3437 ◽  
Author(s):  
Alexandra Meindl ◽  
Nikolaus Osterrieder

ABSTRACT Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 US2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 US2 protein specifically detected a protein with an M r of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-M r Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-M r Us2 polypeptide. Irrespective of its size, the US2 protein was incorporated into virions. The EHV-1 US2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 US2 protein or to a truncated US2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 US2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the US2 protein in the viral envelope and plasma membrane of infected cells, a US2-negative RacL11 mutant (L11ΔUS2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a US2-repaired virus. After infection of BALB/c mice with L11ΔUS2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 US2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.


1987 ◽  
Vol 7 (9) ◽  
pp. 3306-3314
Author(s):  
S Silve ◽  
M Monod ◽  
A Hinnen ◽  
R Haguenauer-Tsapis

The repressible Saccharomyces cerevisiae acid phosphatase (APase) coded by the PHO5 gene is a cell wall glycoprotein that follows the yeast secretory pathway. We used in vitro mutagenesis to construct a deletion (delta SP) including the entire signal sequence and four amino acids of the mature sequence of APase. An APase-deficient yeast strain was transformed with a high-copy-number plasmid carrying the PHO5/delta SP gene. When expressed in vivo, the PHO5/delta SP gene product accumulated predominantly as an inactive, unglycosylated form located inside the cell. A large part of this unglycosylated precursor underwent proteolytic degradation, but up to 30% of it was translocated, core glycosylated, and matured by the addition of mannose residues, before reaching the cell wall. It appears, therefore, that the signal sequence is important for efficient translocation and core glycosylation of yeast APase but that it is not absolutely necessary for entry of the protein into the yeast secretory pathway. mRNA obtained by in vitro transcription of PHO5 and PHO5/delta SP genes were translated in vitro in the presence of either reticulocyte lysate and dog pancreatic microsomes or yeast lysate and yeast microsomes. The PHO5 gene product was translocated and core glycosylated in the heterologous system and less efficiently in the homologous system. We were not able to detect any translocation or glycosylation of PHO5/delta SP gene product in the heterologous system, but a very small amount of core suppression of glycosylated material could be evidenced in the homologous system.


2010 ◽  
Vol 207 (11) ◽  
pp. 2331-2341 ◽  
Author(s):  
John R. Grainger ◽  
Katie A. Smith ◽  
James P. Hewitson ◽  
Henry J. McSorley ◽  
Yvonne Harcus ◽  
...  

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3− T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3− splenocytes from Foxp3–green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus–infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite’s immunological relationship with the host.


Sign in / Sign up

Export Citation Format

Share Document