Expression of human adenosine deaminase in murine hematopoietic cells

1988 ◽  
Vol 8 (12) ◽  
pp. 5116-5125
Author(s):  
J W Belmont ◽  
G R MacGregor ◽  
K Wager-Smith ◽  
F A Fletcher ◽  
K A Moore ◽  
...  

Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.

1988 ◽  
Vol 8 (12) ◽  
pp. 5116-5125 ◽  
Author(s):  
J W Belmont ◽  
G R MacGregor ◽  
K Wager-Smith ◽  
F A Fletcher ◽  
K A Moore ◽  
...  

Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 140-140 ◽  
Author(s):  
Katrien Van Roosbroeck ◽  
Luk Cox ◽  
Idoya Lahortiga ◽  
Olga Gielen ◽  
Thomas Tousseyn ◽  
...  

Abstract Abstract 140 Molecular mechanisms underlying the pathogenesis of classical Hodgkin lymphoma (cHL) are poorly understood. Although no characteristic chromosomal translocation has been identified in cHL, gain and amplification of the 9p24 region harbouring JAK2 has been observed in up to 50% of cHLs. JAK2 encodes a protein tyrosine kinase (PTK) that plays a key role in the JAK/STAT signalling pathway. Chromosomal translocations and gain-of-function mutations involving JAK2 occur in several haematological malignancies. The aim of this study was to characterize a novel t(4;9)(q21;p24) found in a case of nodular sclerosis HL (NSHL), and to determine the in vitro and in vivo consequences of the fusion associated with this translocation. FISH with BAC clones flanking JAK2/9p24 was used to identify the 9p breakpoint and demonstrated involvement of JAK2. A BAC- and fosmid-walking interphase FISH strategy was further applied to identify the 4q21 breakpoint which was eventually mapped in the region of SEC31A. SEC31A is ubiquitously expressed in human cells and is known to play a role in ER-to-Golgi vesicular transport. Further molecular studies led to the identification of a SEC31A-JAK2 in-frame fusion transcript in which exon 24 of SEC31A is fused to exon 17 of JAK2. Of note, our recent studies showed involvement of SEC31A as a partner of ALK in ALK+ LBCL (Van Roosbroeck et al., Haematologica 2009, in press). To determine the in vitro oncogenic potential of SEC31A-JAK2, a chimeric expression construct was designed and introduced into mouse haematopoietic IL3-dependent Ba/F3 cells. SEC31A-JAK2 was found to transform Ba/F3 cells to IL3-independent growth, demonstrating its implication in oncogenic transformation. The fusion protein is likely to function as a constitutively activated tyrosine kinase, due to SEC31A-mediated oligomerization of JAK2. Attempts to identify the SEC31A domain responsible for the constitutive JAK2 activation are ongoing. Initial experiments with deletion mutants containing or lacking the WD40-like repeats of SEC31A exclude these repeats to be the driving force of JAK2 activation. An in vivo role of the fusion was assessed with a murine bone marrow transplant model. All six recipients of SEC31A-JAK2 transduced bone marrow cells developed a fatal disease after 107 – 174 days, showing involvement of the blood, bone marrow and spleen, and in a subset of mice also of lymph nodes and thymus. FACS and histopathological examination of the involved tissues in 3 mice revealed the development of a T-lymphoblastic lymphoma. Analysis of the remaining mice is still ongoing. In addition, we showed that the T-lymphoblastic disease is transplantable to secondary recipients. Downstream of the SEC31A-JAK2 fusion we could demonstrate constitutive activation of the ERK pathway in Ba/F3 cells bearing the SEC31A-JAK2 construct as well as in the reconstituted mouse tissues. To determine the incidence of JAK2 rearrangements in cHL, we screened 60 unselected cHL cases, including 25 with NSHL, by FISH and cDNA-based nested PCR. Using this approach, we identified one additional case with a SEC31A-JAK2 fusion showing 4q21 and 9p24 breakpoints identical to these in the index case. Moreover, we found a third case with a JAK2 rearrangement and two extra copies of the 3'JAK2. As SEC31A is not involved in the latter aberration, further studies aiming at the identification of the JAK2 partner in this case of cHL are ongoing. The vast majority (80%) of the remaining cHL cases analyzed by FISH revealed recurrent gains/amplifications of JAK2. In summary, we proved that JAK2 is recurrently targeted by chromosomal translocations in cHL. We identified and molecularly characterized the novel t(4;9)(q21;p24) resulting in a SEC31A-JAK2 fusion found in two NSHL cases and identified another not yet characterized JAK2 rearrangement in the third cHL case. We demonstrated the oncogenic potential of the SEC31A-JAK2 fusion both in vitro in the mouse haematopoietic IL3-dependent Ba/F3 cell line and in vivo in a murine bone marrow transplant model. Of note, this is the first report of a recurrent translocation associated with cHL. Although aberrant expression of various PTKs including JAK2 has already been documented in cHL, our results indicate that at least in some cHL cases, this aberration can be driven by a chromosomal translocation. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ken-Zaburo Oshima ◽  
Kazuhito Asano ◽  
Ken-Ichi Kanai ◽  
Miyuki Suzuki ◽  
Harumi Suzaki

There is established concept that dendritic cells (DCs) play essential roles in the development of allergic immune responses. However, the influence of receptor antagonists on DC functions is not well defined. The aim of the present study was to examine the effect of epinastine hydrochloride (EP), the most notable histamine receptor antagonists in Japan, onDermatophagoides farinae (Der f)-pulsed mouse bone marrow-derived DCs in vitro and in vivo. EP at more than 25 ng/mL could significantly inhibit the production of IL-6, TNF- and IL-10 fromDer f-pulsed DCs, which was increased byDer fchallenge in vitro. On the other hand, EP increased the ability ofDer f-pulsed DCs to produce IL-12. Intranasal instillation ofDer f-pulsed DCs resulted in nasal eosinophilia associated with a significant increase in IL-5 levels in nasal lavage fluids.Der f-pulsed and EP-treated DCs significantly inhibited nasal eosinophila and reduced IL-5. These results indicate that EP inhibits the development of Th2 immune responses through the modulation of DC functions and results in favorable modification of clinical status of allergic diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Takuji Matsuo ◽  
Tadashi Yamamoto ◽  
...  

We recently reported that chronic myelogenous leukemia (CML) cells converted into myofibroblasts to create a microenvironment for proliferation of CML cellsin vitro. To analyze a biological contribution of CML-derived myofibroblastsin vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID) mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimericBCR-ABLtranscript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferationin vivo.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1339-1345 ◽  
Author(s):  
Jennifer L. Rocnik ◽  
Rachel Okabe ◽  
Jin-Chen Yu ◽  
Benjamin H. Lee ◽  
Neill Giese ◽  
...  

Abstract Acquired mutations in the FLT3 receptor tyrosine kinase are common in acute myeloid leukemia and result in constitutive activation. The most frequent mechanism of activation is disruption of the juxtamembrane autoregulatory domain by internal tandem duplications (ITDs). FLT3-ITDs confer factor-independent growth to hematopoietic cells and induce a myeloproliferative syndrome in murine bone marrow transplant models. We and others have observed that FLT3-ITD activates STAT5 and its downstream effectors, whereas ligand-stimulated wild-type FLT3 (FLT3WT) does not. In vitro mapping of tyrosine phosphorylation sites in FLT3-ITD identified 2 candidate STAT5 docking sites within the juxtamembrane domain that are disrupted by the ITD. Tyrosine to phenylalanine substitution of residues 589 and 591 in the context of the FLT3-ITD did not affect tyrosine kinase activity, but abrogated STAT5 activation. Furthermore, FLT3-ITD–Y589/591F was incapable of inducing a myeloproliferative phenotype when transduced into primary murine bone marrow cells, whereas FLT3-ITD induced myeloproliferative disease with a median latency of 50 days. Thus, the conformational change in the FLT3 juxtamembrane domain induced by the ITD activates the kinase through dysregulation of autoinhibition and results in qualitative differences in signal transduction through STAT5 that are essential for the transforming potential of FLT3-ITD in vivo.


2001 ◽  
Vol 21 (10) ◽  
pp. 3547-3557 ◽  
Author(s):  
Julie Frantsve ◽  
Juerg Schwaller ◽  
David W. Sternberg ◽  
Jeffery Kutok ◽  
D. Gary Gilliland

ABSTRACT TEL-JAK2 fusion proteins, which are a result of t(9;12)(p24;p13) translocations associated with human leukemia, activate Stat5 in vitro and in vivo and cause a myelo- and lymphoproliferative disease in a murine bone marrow transplant model. We report that Socs-1, a member of the SOCS family of endogenous inhibitors of JAKs and STATs, inhibits transformation of Ba/F3 cells by TEL-JAK2 but has no effect on Ba/F3 cells transformed by BCR-ABL, TEL-ABL, or TEL–platelet-derived growth factor receptor beta. TEL-JAK2, in addition to activating Stat5, associates with Shc and Grb2 and induces activation of Erk2, and expression of Socs-1 inhibits engagement of each of these signaling molecules. TEL-JAK2 kinase activity is inhibited by Socs-1, as assessed by in vitro kinase assays. In addition, Socs-1 induces proteasomal degradation of TEL-JAK2. Mutational analysis indicates that the SOCS box of Socs-1 is required for proteasomal degradation and for abrogation of growth of TEL-JAK2-transformed cells. Furthermore, murine bone marrow transplant assays demonstrate that expression of Socs-1 prolongs latency of TEL-JAK2-mediated disease in vivo. Collectively, these data indicate that Socs-1 inhibits TEL-JAK2 in vitro and in vivo through inhibition of kinase activity and induction of TEL-JAK2 protein degradation.


Blood ◽  
2006 ◽  
Vol 107 (11) ◽  
pp. 4274-4281 ◽  
Author(s):  
Gerlinde Wernig ◽  
Thomas Mercher ◽  
Rachel Okabe ◽  
Ross L. Levine ◽  
Benjamin H. Lee ◽  
...  

AbstractAn acquired somatic mutation, Jak2V617F, was recently discovered in most patients with polycythemia vera (PV), chronic idiopathic myelofibrosis (CIMF), and essential thrombocythemia (ET). To investigate the role of this mutation in vivo, we transplanted bone marrow (BM) transduced with a retrovirus expressing either Jak2 wild-type (wt) or Jak2V617F into lethally irradiated syngeneic recipient mice. Expression of Jak2V617F, but not Jak2wt, resulted in clinicopathologic features that closely resembled PV in humans. These included striking elevation in hemoglobin level/hematocrit, leukocytosis, megakaryocyte hyperplasia, extramedullary hematopoiesis resulting in splenomegaly, and reticulin fibrosis in the bone marrow. Histopathologic and flow cytometric analyses showed an increase in maturing myeloid lineage progenitors, although megakaryocytes showed decreased polyploidization and staining for acetylcholinesterase. In vitro analysis of primary cells showed constitutive activation of Stat5 and cytokine-independent growth of erythroid colony-forming unit (CFU-E) and erythropoietin hypersensitivity, and Southern blot analysis for retroviral integration indicated that the disease was oligoclonal. Furthermore, we observed strain-specific differences in phenotype, with Balb/c mice demonstrating markedly elevated leukocyte counts, splenomegaly, and reticulin fibrosis compared with C57Bl/6 mice. We conclude that Jak2V617F expression in bone marrow progenitors results in a PV-like syndrome with myelofibrosis and that there are strain-specific modifiers that may in part explain phenotypic pleiotropy of Jak2V617F-associated myeloproliferative disease in humans.


Blood ◽  
1993 ◽  
Vol 82 (12) ◽  
pp. 3580-3591 ◽  
Author(s):  
N Falla ◽  
Vlasselaer Van ◽  
J Bierkens ◽  
B Borremans ◽  
G Schoeters ◽  
...  

Abstract In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro.


1987 ◽  
Vol 166 (1) ◽  
pp. 210-218 ◽  
Author(s):  
D A Williams ◽  
K Hsieh ◽  
A DeSilva ◽  
R C Mulligan

To develop a highly efficient means for generating methotrexate resistant (MTXr) hematopoietic cells in vivo, a recombinant retroviral genome was constructed that encodes a MTXr dihydrofolate reductase (DHFRr). Cell lines producing high titers of virus capable of transmitting the DHFR gene were generated and used to infect mammalian cells in vitro. Analysis of infected fibroblasts indicated that the DHFRr gene was transmitted intact and conferred a high level of MTXr upon cells. Based on these findings, DHFRr-containing virus was used to infect murine bone marrow cells in vitro. Following infection, the transduced cells were introduced into lethally irradiated recipients via bone marrow transplantation techniques. The presence of the proviral sequences in cells of the spleen and bone marrow of engrafted recipients was associated with significantly increased survival of mice treated with otherwise lethal doses of MTX.


Sign in / Sign up

Export Citation Format

Share Document