scholarly journals The 216-nucleotide intron of the E1A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors.

1989 ◽  
Vol 9 (11) ◽  
pp. 4852-4861 ◽  
Author(s):  
K Chebli ◽  
R Gattoni ◽  
P Schmitt ◽  
G Hildwein ◽  
J Stevenin

A recently characterized 216-nucleotide intron-splicing reaction occurs within the adenovirus E1A pre-mRNA through the use of three branch acceptor sites, located at 59, 55, and 51 nucleotides from the 3' splice site. To investigate the role of the cis-acting sequence elements in the selection of such unusually distant branch sites, transcripts differing in sequence downstream of the branch sites were analyzed for in vitro splicing. Initial results suggested that secondary structure could be involved in the use of distant branch sites. The involvement of a hairpin structure, including a nine-G C-base-pair stem, was supported by the results of site-directed mutagenesis analyses. Mutations that destroyed or weakened this hairpin resulted in an inefficient splicing reaction. In contrast, complementary mutation or deletion of two bulges, which involved a restoration or reinforcement of the hairpin, resulted in a reactivation or improvement of the splicing efficiency, respectively. Therefore, we conclude that the hairpin structure shortens the operational distance between the 3' splice site and the branch acceptors and brings the branch sites into the branch-permissive window, 18 to 40 nucleotides upstream of the 3' splice site. Our results confirm the importance of the constraint of distance for the splicing reaction and show that this constraint may be overcome by means of a stable hairpin formation.

1989 ◽  
Vol 9 (11) ◽  
pp. 4852-4861
Author(s):  
K Chebli ◽  
R Gattoni ◽  
P Schmitt ◽  
G Hildwein ◽  
J Stevenin

A recently characterized 216-nucleotide intron-splicing reaction occurs within the adenovirus E1A pre-mRNA through the use of three branch acceptor sites, located at 59, 55, and 51 nucleotides from the 3' splice site. To investigate the role of the cis-acting sequence elements in the selection of such unusually distant branch sites, transcripts differing in sequence downstream of the branch sites were analyzed for in vitro splicing. Initial results suggested that secondary structure could be involved in the use of distant branch sites. The involvement of a hairpin structure, including a nine-G C-base-pair stem, was supported by the results of site-directed mutagenesis analyses. Mutations that destroyed or weakened this hairpin resulted in an inefficient splicing reaction. In contrast, complementary mutation or deletion of two bulges, which involved a restoration or reinforcement of the hairpin, resulted in a reactivation or improvement of the splicing efficiency, respectively. Therefore, we conclude that the hairpin structure shortens the operational distance between the 3' splice site and the branch acceptors and brings the branch sites into the branch-permissive window, 18 to 40 nucleotides upstream of the 3' splice site. Our results confirm the importance of the constraint of distance for the splicing reaction and show that this constraint may be overcome by means of a stable hairpin formation.


2000 ◽  
Vol 74 (13) ◽  
pp. 5902-5910 ◽  
Author(s):  
Zhi-Ming Zheng ◽  
Jesse Quintero ◽  
Eric S. Reid ◽  
Christian Gocke ◽  
Carl C. Baker

ABSTRACT Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3′ splice site utilization from an early 3′ splice site at nucleotide (nt) 3225 to a late-specific 3′ splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3′ splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3′ splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3′ splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3′ splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3′ splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3′ splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3′ splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3′ splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3′ splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3′ splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.


1987 ◽  
Author(s):  
G A Vehar ◽  
K M Tate ◽  
D L Higgins ◽  
W E Holmes ◽  
H L Heyneker

The significance of the cleavage at arginine-275 of human t-PA has been the subject of debate. It has been reported, as expected for a member of the serine protease family, that the single chain form is a zymogen and that generation of catalytic activity is dependent upon cleavage at arginine-275. Other groups, in contrast, have found considerable enzyme activity associated with the one-chain form of t-PA. To clarify the functional significance of this proteolysis and circumvent cleavage of one-chain t-PA by itself or plasmin, site-directed mutagenesis was employed to change the codon of arginine-275 to specify a glutamic acid. The resulting plasmid was used to transfect CHO cells. The single chain mutant [Glu-275 t-PA] was expressed in CHO cells and the protein purified by conventional techniques. The mutant enzyme could be converted to the two-chain form by V8 protease, but not by plasmin. Glu-275 t-PA was 8 times less active in the cleavage of a tripeptide substrate and 20-50 times less active in the activation of plasminogen in the absence of firbrin(ogen) than its two-chain form. In the presence of fibrin(ogen), in contrast, the one and two-chain forms of Glu-275 t-PA were equal in their ability to activate plasminogen in the presence of fibrin(ogen). The activity in these assays was equal to the activity of wild type t-PA. In addition, it was observed that fibrin bound considerably more of the one-chain form of t-PA than the two chain forms of t-PA and the Glu-275 mutant. The one and two-chain forms of the wild type and mutated t-PA were found to slowly form complexes with plasma protease inhibitors in vitro, although the one-chain forms were less reactive with alpha-2-macroglobulin. It can be concluded that the one-chain form of t-PA appears to be fully functional under physiologic conditions and has an increased affinity for fibrin compared to two-chain t-PA.


1997 ◽  
Vol 17 (5) ◽  
pp. 2774-2780 ◽  
Author(s):  
C F Kennedy ◽  
S M Berget

The minimum size for splicing of a vertebrate intron is approximately 70 nucleotides. In Drosophila melanogaster, more than half of the introns are significantly below this minimum yet function well. Such short introns often lack the pyrimidine tract located between the branch point and 3' splice site common to metazoan introns. To investigate if small introns contain special sequences that facilitate their recognition, the sequences and factors required for the splicing of a 59-nucleotide intron from the D. melanogaster mle gene have been examined. This intron contains only a minimal region of interrupted pyrimidines downstream of the branch point. Instead, two longer, uninterrupted C-rich tracts are located between the 5' splice site and branch point. Both of these sequences are required for maximal in vivo and in vitro splicing. The upstream sequences are also required for maximal binding of factors to the 5' splice site, cross-linking of U2AF to precursor RNA, and assembly of the active spliceosome, suggesting that sequences upstream of the branch point influence events at both ends of the small mle intron. Thus, a very short intron lacking a classical pyrimidine tract between the branch point and 3' splice site requires accessory pyrimidine sequences in the short region between the 5' splice site and branch point.


2019 ◽  
Author(s):  
Jenna M. Lentini ◽  
Dragony Fu

AbstractIn mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific arginine tRNAs for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein in order to recognize particular arginine tRNAs destined for m3C modification. Using biochemical reconstitution, we find that METTL2-DALDR3 complexes catalyze m3C formation in vitro that is dependent upon sequence elements specific to certain arginine tRNAs. Notably, DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in arginine tRNAs. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification.


1993 ◽  
Vol 13 (11) ◽  
pp. 6841-6848 ◽  
Author(s):  
V Goguel ◽  
Y Wang ◽  
M Rosbash

To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.


1999 ◽  
Vol 19 (11) ◽  
pp. 7347-7356 ◽  
Author(s):  
Cyril F. Bourgeois ◽  
Michel Popielarz ◽  
Georges Hildwein ◽  
James Stevenin

ABSTRACT The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5′ splice sites and of one major or one minor 3′ splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5′ splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5′ splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3′ splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5′ splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity.


Sign in / Sign up

Export Citation Format

Share Document