scholarly journals METTL2 forms a complex with the DALRD3 anticodon-domain binding protein to catalyze formation of 3-methylcytosine in specific arginine tRNA isoacceptors

2019 ◽  
Author(s):  
Jenna M. Lentini ◽  
Dragony Fu

AbstractIn mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific arginine tRNAs for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein in order to recognize particular arginine tRNAs destined for m3C modification. Using biochemical reconstitution, we find that METTL2-DALDR3 complexes catalyze m3C formation in vitro that is dependent upon sequence elements specific to certain arginine tRNAs. Notably, DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in arginine tRNAs. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification.

2006 ◽  
Vol 74 (2) ◽  
pp. 821-829 ◽  
Author(s):  
B. Mann ◽  
C. Orihuela ◽  
J. Antikainen ◽  
G. Gao ◽  
J. Sublett ◽  
...  

ABSTRACT Members of the choline binding protein (Cbp) family are noncovalently bound to phosphorylcholine residues on the surface of Streptococcus pneumoniae. It has been suggested that CbpG plays a role in adherence and increase virulence both at the mucosal surface and in the bloodstream, but the function of this protein has been unclear. A new sequence analysis indicated that CbpG is a possible member of the S1 family of multifunctional surface-associated serine proteases. Clinical isolates contained two alleles of cbpG, and one-third of the strains expressed a truncated protein lacking the C-terminal, cell wall-anchoring choline binding domain. CbpG on the surface of pneumococci (full length) or released into the supernatant (truncated) showed proteolytic activity for fibronectin and casein, as did CbpG expressed on lactobacilli or as a purified full-length or truncated recombinant protein. Recombinant CbpG (rCbpG)-coated beads adhered to eukaryotic cells, and TIGR4 mutants lacking CbpG or having a truncated CbpG protein showed decreased adherence in vitro and attenuation of disease in mouse challenge models of colonization, pneumonia, and bacteremia. Immunization with rCbpG was protective in an animal model of colonization and sepsis. We propose that CbpG is a multifunctional surface protein that in the cell-attached or secreted form cleaves host extracellular matrix and in the cell-attached form participates in bacterial adherence. This is the first example of distinct functions in virulence that are dependent on natural variation in expression of a choline binding domain.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xue-Yang Li ◽  
Yi Hu ◽  
Nian-Shuang Li ◽  
Jian-Hua Wan ◽  
Yin Zhu ◽  
...  

Background. The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. Materials and Methods. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. Results. RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P<0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P<0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. Conclusions. Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.


2010 ◽  
Vol 33 (2) ◽  
pp. 341-347
Author(s):  
Elisa E. Oshiro ◽  
Milene B. Tavares ◽  
Celso F. Suzuki ◽  
Daniel C. Pimenta ◽  
Claudia B. Angeli ◽  
...  

2002 ◽  
Vol 22 (11) ◽  
pp. 3803-3819 ◽  
Author(s):  
Takayuki Kadoya ◽  
Hideki Yamamoto ◽  
Toshiaki Suzuki ◽  
Akira Yukita ◽  
Akimasa Fukui ◽  
...  

ABSTRACT Axam has been identified as a novel Axin-binding protein that inhibits the Wnt signaling pathway. We studied the molecular mechanism by which Axam stimulates the downregulation of β-catenin. The C-terminal region of Axam has an amino acid sequence similar to that of the catalytic region of SENP1, a SUMO-specific protease (desumoylation enzyme). Indeed, Axam exhibited activity to remove SUMO from sumoylated proteins in vitro and in intact cells. The Axin-binding domain is located in the central region of Axam, which is different from the catalytic domain. Neither the Axin-binding domain nor the catalytic domain alone was sufficient for the downregulation of β-catenin. An Axam fragment which contains both domains was able to decrease the level of β-catenin. On substitution of Ser for Cys547 in the catalytic domain, Axam lost its desumoylation activity. Further, this Axam mutant decreased the activity to downregulate β-catenin. Although Axam strongly inhibited axis formation and expression of siamois, a Wnt-response gene, in Xenopus embryos, AxamC547S showed weak activities. These results demonstrate that Axam functions as a desumoylation enzyme to downregulate β-catenin and suggest that sumoylation is involved in the regulation of the Wnt signaling pathway.


2004 ◽  
Vol 24 (1) ◽  
pp. 352-361 ◽  
Author(s):  
Heather A. Wiatrowski ◽  
Bryce J. W. van Denderen ◽  
Cristin D. Berkey ◽  
Bruce E. Kemp ◽  
David Stapleton ◽  
...  

ABSTRACT The yeast Snf1 kinase and its mammalian ortholog, AMP-activated protein kinase (AMPK), regulate responses to metabolic stress. Previous studies identified a glycogen-binding domain in the AMPK β1 subunit, and the sequence is conserved in the Snf1 kinase β subunits Gal83 and Sip2. Here we use genetic analysis to assess the role of this domain in vivo. Alteration of Gal83 at residues that are important for glycogen binding of AMPK β1 abolished glycogen binding in vitro and caused diverse phenotypes in vivo. Various Snf1/Gal83-dependent processes were upregulated, including glycogen accumulation, expression of RNAs encoding glycogen synthase, haploid invasive growth, the transcriptional activator function of Sip4, and activation of the carbon source-responsive promoter element. Moreover, the glycogen-binding domain mutations conferred transcriptional regulatory phenotypes even in the absence of glycogen, as determined by analysis of a mutant strain lacking glycogen synthase. Thus, mutation of the glycogen-binding domain of Gal83 positively affects Snf1/Gal83 kinase function by a mechanism that is independent of glycogen binding.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 718-724 ◽  
Author(s):  
Nicholas A. Watkins ◽  
Lily M. Du ◽  
J. Paul Scott ◽  
Willem H. Ouwehand ◽  
Cheryl A. Hillery

AbstractThe enhanced adhesion of sickle red blood cells (RBCs) to the vascular endothelium and subendothelial matrix likely plays a significant role in the pathogenesis of vaso-occlusion in sickle cell disease. Sickle RBCs have enhanced adhesion to the plasma and extracellular matrix protein thrombospondin-1 (TSP) under conditions of flow in vitro. In this study, we sought to develop antibodies that bind TSP from a highly diverse library of human single-chain Fv fragments (scFvs) displayed on filamentous phage. Following 3 rounds of phage selection of increasing stringency 6 unique scFvs that bound purified TSP by enzyme-linked immunosorbent assay were isolated. Using an in vitro flow adhesion assay, 3 of the 6 isolated scFvs inhibited the adhesion of sickle RBCs to immobilized TSP by more than 40% compared with control scFvs (P &lt; .001). Furthermore, scFv TSP-A10 partially inhibited sickle RBC adhesion to activated endothelial cells (P &lt; .005). Using TSP proteolytic fragments to map the binding site, we showed that 2 of the inhibitory scFvs bound an epitope in the calcium-binding domain or proximal cell-binding domain of TSP, providing evidence for the role of these domains in the adhesion of sickle RBCs to TSP. In summary, we have isolated a panel of scFvs that specifically bind to TSP and differentially inhibit sickle RBC adhesion to surface-bound TSP under flow conditions. These scFvs will be useful reagents for investigating the role of the calcium and cell-binding domains of TSP in sickle RBC adhesion.


2005 ◽  
Vol 138 (4) ◽  
pp. 413-423 ◽  
Author(s):  
Koji Tomoo ◽  
Tian-Ming Yao ◽  
Katsuhiko Minoura ◽  
Shuko Hiraoka ◽  
Miho Sumida ◽  
...  

2008 ◽  
Vol 19 (3) ◽  
pp. 971-983 ◽  
Author(s):  
Rie Yamamura ◽  
Noriyuki Nishimura ◽  
Hiroyoshi Nakatsuji ◽  
Seiji Arase ◽  
Takuya Sasaki

The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca2+-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs.


Sign in / Sign up

Export Citation Format

Share Document