scholarly journals Sec59 encodes a membrane protein required for core glycosylation in Saccharomyces cerevisiae.

1989 ◽  
Vol 9 (3) ◽  
pp. 1191-1199 ◽  
Author(s):  
M Bernstein ◽  
F Kepes ◽  
R Schekman

When incubated at a restrictive temperature, Saccharomyces cerevisiae sec59 mutant cells accumulate inactive and incompletely glycosylated forms of secretory proteins. Three different secretory polypeptides (invertase, pro-alpha-factor, and pro-carboxypeptidase Y) accumulated within a membrane-bounded organelle, presumably the endoplasmic reticulum, and resisted proteolytic degradation unless the membrane was permeabilized with detergent. Molecular cloning and DNA sequence analysis of the SEC59 gene predicted an extremely hydrophobic protein product of 59 kilodaltons. This prediction was confirmed by reconstitution of the sec59 defect in vitro. The alpha-factor precursor, which was translated in a soluble fraction from wild-type cells, was translocated into, but inefficiently glycosylated within, membranes from sec59 mutant cells. Residual glycosylation activity of membranes of sec59 cells was thermolabile compared with the activity of wild-type membranes. Partial restoration of glycosylation was obtained in reactions that were supplemented with mannose or GDP-mannose, but not those supplemented with other sugar nucleotides. These results were consistent with a role for the Sec59 protein in the transfer of mannose to dolichol-linked oligosaccharide.

1989 ◽  
Vol 9 (3) ◽  
pp. 1191-1199
Author(s):  
M Bernstein ◽  
F Kepes ◽  
R Schekman

When incubated at a restrictive temperature, Saccharomyces cerevisiae sec59 mutant cells accumulate inactive and incompletely glycosylated forms of secretory proteins. Three different secretory polypeptides (invertase, pro-alpha-factor, and pro-carboxypeptidase Y) accumulated within a membrane-bounded organelle, presumably the endoplasmic reticulum, and resisted proteolytic degradation unless the membrane was permeabilized with detergent. Molecular cloning and DNA sequence analysis of the SEC59 gene predicted an extremely hydrophobic protein product of 59 kilodaltons. This prediction was confirmed by reconstitution of the sec59 defect in vitro. The alpha-factor precursor, which was translated in a soluble fraction from wild-type cells, was translocated into, but inefficiently glycosylated within, membranes from sec59 mutant cells. Residual glycosylation activity of membranes of sec59 cells was thermolabile compared with the activity of wild-type membranes. Partial restoration of glycosylation was obtained in reactions that were supplemented with mannose or GDP-mannose, but not those supplemented with other sugar nucleotides. These results were consistent with a role for the Sec59 protein in the transfer of mannose to dolichol-linked oligosaccharide.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


1985 ◽  
Vol 5 (4) ◽  
pp. 902-905
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


1985 ◽  
Vol 5 (4) ◽  
pp. 902-905 ◽  
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


1980 ◽  
Vol 85 (3) ◽  
pp. 811-822 ◽  
Author(s):  
L H Hartwell

Temperature-sensitive mutations that produce insensitivity to division arrest by alpha-factor, a mating pheromone, were isolated in an MATa strain of Saccharomyces cerevisiae and shown by complementation studies to difine eight genes. All of these mutations (designated ste) produce sterility at the restrictive temperature in MATa cells, and mutations in seven of the genes produce sterility in MAT alpha cells. In no case was the sterility associated with these mutations coorectible by including wild-type cells of the same mating type in the mating test nor did nay of the mutants inhibit mating of the wild-type cells; the defect appears to be intrinsic to the cell for mutations in each of the genes. Apparently, none of the mutants is defective exclusively in division arrest by alpha-factor, as the sterility of none is suppressed by a temperature-sensitive cdc 28 mutation (the latter imposes division arrest at the correct cell cycle stage for mating). The mutants were examined for features that are inducible in MATa cells by alpha-factor (agglutinin synthesis as well as division arrest) and for the characteristics that constitutively distinguish MATa from MAT alpha cells (a-factor production, alpha-factor destruction). ste2 Mutants are defective specifically in the two inducible properties, whereas ste4, 5, 7, 8, 9, 11, and 12 mutants are defective, to varying degrees, in constitutive as well as inducible aspects. Mutations in ste8 and 9 assume a polar budding pattern unlike either MATa or MAT alpha cells but characteristic of MATa/alpha cells. This study defines seven genes that function in two cell types (MATa and alpha) to control the differentiation of cell type and one gene, ste2, that functions exclusively in MATa cells to mediate responsiveness to polypeptide hormone.


1984 ◽  
Vol 4 (9) ◽  
pp. 1815-1822 ◽  
Author(s):  
G C Zeng ◽  
J Donegan ◽  
H L Ozer ◽  
R Hand

ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.


1984 ◽  
Vol 4 (9) ◽  
pp. 1815-1822
Author(s):  
G C Zeng ◽  
J Donegan ◽  
H L Ozer ◽  
R Hand

ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.


1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum ( sec18 ), Golgi ( sec7 ), or secretory vesicles ( sec1 ). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl- l -phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post- sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2 . Protoxin stability in kex1 kex2 double mutants indicated the order kex1 → kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1 - and KEX2 -dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


2001 ◽  
Vol 12 (4) ◽  
pp. 1093-1101 ◽  
Author(s):  
Carol Harty ◽  
Sabine Strahl ◽  
Karin Römisch

Secretory proteins that fail to fold in the endoplasmic reticulum (ER) are transported back to the cytosol and degraded by proteasomes. It remains unclear how the cell distinguishes between folding intermediates and misfolded proteins. We asked whether misfolded secretory proteins are covalently modified in the ER before export. We found that a fraction of mutant alpha-factor precursor, but not the wild type, was progressively O-mannosylated in microsomes and in intact yeast cells by proteinO-mannosyl transferase 2 (Pmt2p).O-Mannosylation increased significantly in vitro under ER export conditions, i.e., in the presence of ATP and cytosol, and this required export-proficient Sec61p in the ER membrane. Deletion ofPMT2, however, did not abrogate mutant alpha-factor precursor degradation but, rather, enhanced its turnover in intact yeast cells. In vitro, O-mannosylated mutant alpha-factor precursor was stable and protease protected, and a fraction was associated with Sec61p in the ER lumen. Thus, prolonged ER residence allows modification of exposed O-mannosyl acceptor sites in misfolded proteins, which abrogates misfolded protein export from the ER at a posttargeting stage. We conclude that there is a limited window of time during which misfolded proteins can be removed from the ER before they acquire inappropriate modifications that can interfere with disposal through the Sec61 channel.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465 ◽  
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Sign in / Sign up

Export Citation Format

Share Document