sec61 channel
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 12757
Author(s):  
Sung-jun Jung ◽  
Hyun Kim

Most secreted and membrane proteins are targeted to and translocated across the endoplasmic reticulum (ER) membrane through the Sec61 protein-conducting channel. Evolutionarily conserved Sec62 and Sec63 associate with the Sec61 channel, forming the Sec complex and mediating translocation of a subset of proteins. For the last three decades, it has been thought that ER protein targeting and translocation occur via two distinct pathways: signal recognition particle (SRP)-dependent co-translational or SRP-independent, Sec62/Sec63 dependent post-translational translocation pathway. However, recent studies have suggested that ER protein targeting and translocation through the Sec translocon are more intricate than previously thought. This review summarizes the current understanding of the molecular functions of Sec62/Sec63 in ER protein translocation.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008855
Author(s):  
Pratiti Bhadra ◽  
Lalitha Yadhanapudi ◽  
Karin Römisch ◽  
Volkhard Helms

The Sec complex catalyzes the translocation of proteins of the secretory pathway into the endoplasmic reticulum and the integration of membrane proteins into the endoplasmic reticulum membrane. Some substrate peptides require the presence and involvement of accessory proteins such as Sec63. Recently, a structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins was determined by cryo-electron microscopy (cryo-EM). Here, we show by co-precipitation that the accessory membrane protein Sec62 is not required for formation of stable Sec63-Sec61 contacts. Molecular dynamics simulations started from the cryo-EM conformation of Sec61 bound to Sec63 and of unbound Sec61 revealed how Sec63 affects the conformation of Sec61 lateral gate, plug, pore region and pore ring diameter via three intermolecular contact regions. Molecular docking of SRP-dependent vs. SRP-independent peptide chains into the Sec61 channel showed that the pore regions affected by presence/absence of Sec63 play a crucial role in positioning the signal anchors of SRP-dependent substrates nearby the lateral gate.


2020 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

SummaryThe universally conserved Sec61/SecY channel mediates transport of many newly synthesized polypeptides across membranes, an essential step in protein secretion and membrane protein integration1-5. The channel has two gating mechanisms—a lipid-facing lateral gate, through which hydrophobic signal sequences or transmembrane helices (TMs) are released into the membrane, and a vertical gate, called the plug, which regulates the water-filled pore required for translocation of hydrophilic polypeptide segments6. Currently, how these gates are controlled and how they regulate the translocation process remain poorly understood. Here, by analyzing cryo-electron microscopy (cryo-EM) structures of several variants of the eukaryotic post-translational translocation complex Sec61-Sec62-Sec63, we reveal discrete gating steps of Sec61 and the mechanism by which Sec62 and Sec63 induce these gating events. We show that Sec62 forms a V-shaped structure in front of the lateral gate to fully open both gates of Sec61. Without Sec62, the lateral gate opening narrows, and the vertical pore becomes closed by the plug, rendering the channel inactive. We further show that the lateral gate is opened first by interactions between Sec61 and Sec63 in both cytosolic and luminal domains, a simultaneous disruption of which fully closes the channel. Our study defines the function of Sec62 and illuminates how Sec63 and Sec62 work together in a hierarchical manner to activate the Sec61 channel for post-translational translocation.


Channels ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 28-44
Author(s):  
Marie-Christine Klein ◽  
Monika Lerner ◽  
Duy Nguyen ◽  
Stefan Pfeffer ◽  
Johanna Dudek ◽  
...  

2019 ◽  
Author(s):  
Stefan Schorr ◽  
Duy Nguyen ◽  
Sarah Haßdenteufel ◽  
Nagarjuna Nagaraj ◽  
Adolfo Cavalié ◽  
...  

AbstractIn mammalian cells one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61-channel. While the Sec61-complex facilitates ER-import of most precursor polypeptides, the Sec61-associated Sec62/Sec63-complex supports ER-import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63-complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER-import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified twenty-two novel Sec62/Sec63-substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides with comparatively longer but less hydrophobic H-region and lower C-region polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly-gating signal peptide and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62-/Sec63-requirement. In the case of ERj3, these features were found to be responsible for an additional BiP-requirement and to correlate with sensitivity towards the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63-complex may support Sec61-channel opening for precursor polypeptides with slowly-gating signal peptides by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked Polycystic Liver Disease.DatabasesThe mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data under the DOI:10.17632/6s5hn73jcv.1 (http://dx.doi.or/10.17632/6s5hn73jcv.1).


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Vivekanandan Shanmuganathan ◽  
Nina Schiller ◽  
Anastasia Magoulopoulou ◽  
Jingdong Cheng ◽  
Katharina Braunger ◽  
...  

XBP1u, a central component of the unfolded protein response (UPR), is a mammalian protein containing a functionally critical translational arrest peptide (AP). Here, we present a 3 Å cryo-EM structure of the stalled human XBP1u AP. It forms a unique turn in the ribosomal exit tunnel proximal to the peptidyl transferase center where it causes a subtle distortion, thereby explaining the temporary translational arrest induced by XBP1u. During ribosomal pausing the hydrophobic region 2 (HR2) of XBP1u is recognized by SRP, but fails to efficiently gate the Sec61 translocon. An exhaustive mutagenesis scan of the XBP1u AP revealed that only 8 out of 20 mutagenized positions are optimal; in the remaining 12 positions, we identify 55 different mutations increase the level of translational arrest. Thus, the wildtype XBP1u AP induces only an intermediate level of translational arrest, allowing efficient targeting by SRP without activating the Sec61 channel.


Biology Open ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. bio040691 ◽  
Author(s):  
Anke Ziska ◽  
Jörg Tatzelt ◽  
Johanna Dudek ◽  
Adrienne W. Paton ◽  
James C. Paton ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 14876-14883
Author(s):  
Sujuan Sun ◽  
Shuangshuang Wang ◽  
Zhangfa Tong ◽  
Xingdong Yao ◽  
Jian Gao

The lateral gate of Sec61 is able to recover its partially-closed state rapidly after the nascent chain segment enters the bilayer, which triggers subsequent motions of the pore ring and plug.


2018 ◽  
Author(s):  
Fábio Pereira ◽  
Mandy Rettel ◽  
Frank Stein ◽  
Mikhail M. Savitski ◽  
Ian Collinson ◽  
...  

AbstractProteins that misfold in the endoplasmic reticulum (ER) are transported back to the cytosol for ER-associated degradation (ERAD). The Sec61 channel is one of the candidates for the retrograde transport conduit. Channel opening from the ER lumen must be triggered by ERAD factors and substrates. Here we identified new lumenal interaction partners of Sec61 by chemical crosslinking and mass spectrometry. In addition to known Sec61 interactors we detected ERAD factors including Cue1, Ubc6, Ubc7, Asi3, and Mpd1. We show that the CPY* ERAD factor Mpd1 binds to the lumenal Sec61 hinge region. Deletion of the Mpd1 binding site reduced the interaction between both proteins and caused an ERAD defect specific for CPY* without affecting protein import into the ER or ERAD of other substrates. Our data suggest that Mpd1 binding to Sec61 is a prerequisite for CPY* ERAD and confirm a role of Sec61 in ERAD of misfolded secretory proteins.


Cell Reports ◽  
2018 ◽  
Vol 23 (5) ◽  
pp. 1373-1386 ◽  
Author(s):  
Sarah Haßdenteufel ◽  
Nicholas Johnson ◽  
Adrienne W. Paton ◽  
James C. Paton ◽  
Stephen High ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document