scholarly journals Metagenomics Unveils Posidonia oceanica “Banquettes” as a Potential Source of Novel Bioactive Compounds and Carbohydrate Active Enzymes (CAZymes)

mSystems ◽  
2021 ◽  
Author(s):  
Esther Rubio-Portillo ◽  
Ana-Belen Martin-Cuadrado ◽  
Alfonso Ángel Ramos-Esplá ◽  
Josefa Antón

Posidonia oceanica is a long-living and very slow-growing marine seagrass endemic to the Mediterranean Sea that forms large amounts of leaf material and rhizomes, which can reach the shore and build important banks known as “banquettes.” These banquettes accumulate on the shore, where they can prevent erosion, although they also cause social concern due to their impact on beach use. Furthermore, Posidonia dry material has been considered a source of traditional remedies in several areas of the Mediterranean, and a few studies have been carried out to explore pharmacological activities of Posidonia extracts.

Check List ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 489-495
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Ophelia roscoffensis Augener, 1910 is an opheliid worm identifiable by the number of anterior abranchiate chaetigers and the number of the gill pairs. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first record of Ophelia roscoffensis in the Italian waters. A total of 18 specimens were collected along the coast of Civitavecchia (Tyrrhenian Sea) in a Posidonia oceanica (L.) Delile bed at a depth of 7 m.


Check List ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 125-130
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Goniadella bobrezkii (Annenkova, 1929) is a small goniadid worm identifiable by the number of anterior uniramous parapodia and by the position of the posterior spine-like notochetae arising dorsal to dorsal cirri. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first generic and specific record of G. bobrezkii along Italian coasts. A total of 25 specimens were collected in a Posidonia oceanica (L.) Delile bed, depth of 7 m, off Civitavecchia (Rome).


2013 ◽  
Vol 14 (1) ◽  
pp. 193 ◽  
Author(s):  
M. BONACORSI ◽  
C. PERGENT-MARTINI ◽  
N. BREAND ◽  
G. PERGENT

Over the last few years, a widespread regression of Posidonia oceanica meadows has been noticed in the Mediterranean Sea. However, the magnitude of this decline is still debated. The objectives of this study are (i) to assess the spatio-temporal evolution of Posidonia oceanica around Cap Corse (Corsica) over time comparing available ancient maps (from 1960) with a new (2011) detailed map realized combining different techniques (aerial photographs, SSS, ROV, scuba diving); (ii) evaluate the reliability of ancient maps; (iii) discuss observed regression of the meadows in relation to human pressure along the 110 km of coast. Thus, the comparison with previous data shows that, apart from sites clearly identified with the actual evolution, there is a relative stability of the surfaces occupied by the seagrass Posidonia oceanica. The recorded differences seem more related to changes in mapping techniques. These results confirm that in areas characterized by a moderate anthropogenic impact, the Posidonia oceanica meadow has no significant regression and that the changes due to the evolution of mapping techniques are not negligible. However, others facts should be taken into account before extrapolating to the Mediterranean Sea (e.g. actually mapped surfaces) and assessing the amplitude of the actual regression.


2021 ◽  
Vol 165 ◽  
pp. 105236
Author(s):  
Christine Pergent-Martini ◽  
Gérard Pergent ◽  
Briac Monnier ◽  
Charles-François Boudouresque ◽  
Christophe Mori ◽  
...  

Author(s):  
Carla Micheli ◽  
Patrizia Paganin ◽  
Massimo Maffucci ◽  
Tania Dolce ◽  
Giuseppe Nascetti ◽  
...  

2021 ◽  
Author(s):  
Alice Madonia ◽  

<p><em>Posidonia oceanica </em>(L.) Delile meadows are considered as the most productive ecosystems of the Mediterranean basin, sequestering and storing significant amount of blue carbon in their rich organic sediments and in their living and non-living biomass and these meadows are identified as a priority habitat type for conservation under the Habitat Directive (Dir 92/43/CEE). Despite the importance of the ecosystem services it provides, this habitat is disappearing at a rate four times as high as that of terrestrial forests, experiencing an alarming reduction due to the impacts of human activities in coastal areas, especially in the north-western side of the Mediterranean Sea. To face this issue, the SeaForest Life project foresees the quantification of carbon deposits and their rate of change related to habitat degradation specifically focusing on the effects caused by boat’s anchors and moorings. The project is realized in the Archipelago of la Maddalena National Park, the Asinara National Park and the Cilento, Vallo di Diano and Alburni National Park, for which ad hoc management plans of mooring are going to be adopted to reduce the impact of this practice on the seagrass meadows. As a first step, an updating of habitat 1120*’s cartography in each of the Marine Protected Areas engaged in the project have been fulfilled, using high definition multispectral imagery. Furthermore, monitoring of the areas with the highest attendance of the anchorages was carried out through the use of medium resolution satellite multi-spectral images using the infrared band, to identify and quantify the degradation and the state of conservation of the <em>P.oceanica</em> meadows present in the investigated areas. The updated cartography has been used to implement the InVEST Coastal Blue Carbon (CBC) which attempts to predict the sequestration, storage and, when degraded, the emissions of carbon by coastal ecosystems, so representing a useful tool for the analysis of the ecological and economic effects of the degradation processes (boats anchoring) and mitigation measures (anchor management plan and eco friendly moorings). Up to now, the InVEST-CBC model has estimated a CO<sub>2</sub> loss due to boats anchoring equal to 2300 tCO<sub>2</sub>/year, using stock and flow data in soil and biomass obtained from the results of the Life Blue Natura project and<em> P. oceanica</em> samples collected in the Cilento National Park. In the future, the results of the model will be improved with data collected in the other two project areas, also through the use of innovative instrumentation. Moreover, the scenarios with the implementation of the mooring management plans will be analyzed in the three study areas. The dataset obtained by the model is being used to define a standard protocol for the estimation of CO<sub>2</sub> fixation by <em>P. oceanica </em>meadows in the Mediterranean Sea. Such protocol will be fundamental for the realization of a national IT-based platform for a voluntary based carbon market to sell and acquire the carbon credits generated by the SeaForest Life project activities, to be extended to all the Mediterranean countries and to be scaled up to new protected marine areas.</p>


Sign in / Sign up

Export Citation Format

Share Document