Towards the definition of a standard protocol for the estimation of CO2 fixation by Posidonia oceanica meadows in the Mediterranean Sea (SeaForest Life Project)

Author(s):  
Alice Madonia ◽  

<p><em>Posidonia oceanica </em>(L.) Delile meadows are considered as the most productive ecosystems of the Mediterranean basin, sequestering and storing significant amount of blue carbon in their rich organic sediments and in their living and non-living biomass and these meadows are identified as a priority habitat type for conservation under the Habitat Directive (Dir 92/43/CEE). Despite the importance of the ecosystem services it provides, this habitat is disappearing at a rate four times as high as that of terrestrial forests, experiencing an alarming reduction due to the impacts of human activities in coastal areas, especially in the north-western side of the Mediterranean Sea. To face this issue, the SeaForest Life project foresees the quantification of carbon deposits and their rate of change related to habitat degradation specifically focusing on the effects caused by boat’s anchors and moorings. The project is realized in the Archipelago of la Maddalena National Park, the Asinara National Park and the Cilento, Vallo di Diano and Alburni National Park, for which ad hoc management plans of mooring are going to be adopted to reduce the impact of this practice on the seagrass meadows. As a first step, an updating of habitat 1120*’s cartography in each of the Marine Protected Areas engaged in the project have been fulfilled, using high definition multispectral imagery. Furthermore, monitoring of the areas with the highest attendance of the anchorages was carried out through the use of medium resolution satellite multi-spectral images using the infrared band, to identify and quantify the degradation and the state of conservation of the <em>P.oceanica</em> meadows present in the investigated areas. The updated cartography has been used to implement the InVEST Coastal Blue Carbon (CBC) which attempts to predict the sequestration, storage and, when degraded, the emissions of carbon by coastal ecosystems, so representing a useful tool for the analysis of the ecological and economic effects of the degradation processes (boats anchoring) and mitigation measures (anchor management plan and eco friendly moorings). Up to now, the InVEST-CBC model has estimated a CO<sub>2</sub> loss due to boats anchoring equal to 2300 tCO<sub>2</sub>/year, using stock and flow data in soil and biomass obtained from the results of the Life Blue Natura project and<em> P. oceanica</em> samples collected in the Cilento National Park. In the future, the results of the model will be improved with data collected in the other two project areas, also through the use of innovative instrumentation. Moreover, the scenarios with the implementation of the mooring management plans will be analyzed in the three study areas. The dataset obtained by the model is being used to define a standard protocol for the estimation of CO<sub>2</sub> fixation by <em>P. oceanica </em>meadows in the Mediterranean Sea. Such protocol will be fundamental for the realization of a national IT-based platform for a voluntary based carbon market to sell and acquire the carbon credits generated by the SeaForest Life project activities, to be extended to all the Mediterranean countries and to be scaled up to new protected marine areas.</p>

Diversity ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Felix Ivo Rossbach ◽  
Benedikt Merk ◽  
Christian Wild

The Mediterranean Sea comprises habitats such as Posidonia oceanica seagrass meadows that exhibit high associated biodiversity of sessile organisms. Recent pilot research indicates that benthic mats formed by the scarcely investigated fleshy red alga Phyllophora crispa also host a high diversity of benthic fauna. Among the key taxa found in these mats in the recent pilot studies are benthic foraminifera that live as epiphytes on the red algae thalli. Knowledge about their abundance and species richness associated with this habitat in relation to reference habitats is missing. We thus carried out a comparative assessment focusing on foraminifera within samples from P. crispa mats and neighboring P. oceanica meadows on five different sampling sites around Giglio Island in the Tuscan Archipelago (Tyrrhenian Sea, Italy). A total of 104 different foraminiferal taxa were identified, of which a total of 85 taxa were found in P. crispa samples (46 exclusively in this habitat). This biodiversity was higher compared to other studies on phytal habitats in the Mediterranean Sea. The number of foraminiferal taxa associated with P. crispa was significantly higher (average 27.5 ± 8.1 taxa) compared to P. oceanica (leaves average 7.0 ± 3.6, shoots average 7.9 ± 3.4 taxa). The abundance of foraminifera (12,000 individuals m−2 surface area of P. crispa mat) was also higher than in the neighboring P. oceanica meadows (7792 individuals m−2 leaf and 8171 individuals m−2 shoot surface area). The most frequently found taxa across habitats were Miniacina miniacea, Lobatula lobatula, and Sejunctella sp. (24%, 20%, and 6% of the total population, respectively). Our results imply that P. crispa mats host an exceptional diversity of associated foraminifera that is even higher than those associated with seagrass meadows. Red algae mats built by P. crispa may thus be considered as potential refuge habitats and biodiversity reservoirs in management and conservation.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Check List ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 489-495
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Ophelia roscoffensis Augener, 1910 is an opheliid worm identifiable by the number of anterior abranchiate chaetigers and the number of the gill pairs. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first record of Ophelia roscoffensis in the Italian waters. A total of 18 specimens were collected along the coast of Civitavecchia (Tyrrhenian Sea) in a Posidonia oceanica (L.) Delile bed at a depth of 7 m.


Check List ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 125-130
Author(s):  
Emanuele Mancini ◽  
Francesco Tiralongo ◽  
Daniele Ventura ◽  
Andrea Bonifazi

Goniadella bobrezkii (Annenkova, 1929) is a small goniadid worm identifiable by the number of anterior uniramous parapodia and by the position of the posterior spine-like notochetae arising dorsal to dorsal cirri. Although it was already reported in the Mediterranean Sea, it has never been found in the Italian waters. This study represents the first generic and specific record of G. bobrezkii along Italian coasts. A total of 25 specimens were collected in a Posidonia oceanica (L.) Delile bed, depth of 7 m, off Civitavecchia (Rome).


2013 ◽  
Vol 10 (7) ◽  
pp. 12491-12527 ◽  
Author(s):  
C. Guieu ◽  
F. Dulac ◽  
C. Ridame ◽  
P. Pondaven

Abstract. The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea – etymologically, sea surrounded by land – is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m−2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition events were found to impact the dissolved concentrations of inorganic dissolved phosphorus, nitrogen, iron and other trace elements. In the case of Fe, adsorption on sinking particles yields a decrease in dissolved concentration unless binding ligands were produced following a former deposition input and associated fertilization. For the first time, a quantification of the C export induced by the aerosol addition was possible. Description and parameterization of biotic (heterotrophs and autotrophs, including diazotrophs) and abiotic processes (ballast effect due to lithogenic particles) after dust addition in sea surface water, result in a net particulate organic carbon export in part controlled by the "lithogenic carbon pump".


2013 ◽  
Vol 14 (1) ◽  
pp. 193 ◽  
Author(s):  
M. BONACORSI ◽  
C. PERGENT-MARTINI ◽  
N. BREAND ◽  
G. PERGENT

Over the last few years, a widespread regression of Posidonia oceanica meadows has been noticed in the Mediterranean Sea. However, the magnitude of this decline is still debated. The objectives of this study are (i) to assess the spatio-temporal evolution of Posidonia oceanica around Cap Corse (Corsica) over time comparing available ancient maps (from 1960) with a new (2011) detailed map realized combining different techniques (aerial photographs, SSS, ROV, scuba diving); (ii) evaluate the reliability of ancient maps; (iii) discuss observed regression of the meadows in relation to human pressure along the 110 km of coast. Thus, the comparison with previous data shows that, apart from sites clearly identified with the actual evolution, there is a relative stability of the surfaces occupied by the seagrass Posidonia oceanica. The recorded differences seem more related to changes in mapping techniques. These results confirm that in areas characterized by a moderate anthropogenic impact, the Posidonia oceanica meadow has no significant regression and that the changes due to the evolution of mapping techniques are not negligible. However, others facts should be taken into account before extrapolating to the Mediterranean Sea (e.g. actually mapped surfaces) and assessing the amplitude of the actual regression.


2018 ◽  
Author(s):  
Abir Fersi ◽  
Nawfel Mosbahi ◽  
Ali Bakalem ◽  
Jean-Philippe Pezy ◽  
Alexandrine Baffreau ◽  
...  

The Gulf of Gabès on the southern coasts of Tunisia in the central part of the Mediterranean is a very shallow basin, characterized by semidiurnal tides, attaining a range of 2.3 m during spring tides. The intertidal zone was covered by extended Zostera (Zosterella) noltei Hornemann, 1832 beds mainly developed around the Kneiss Islands while tidal channels ensured the water circulation in this sub-tropical environment with very low freshwater input and high summer temperature. In spite of protected conventions, the area remained under high human pressures: overfishing, and the impact of the pollution of the phosphate industry. Intensive sampling in both intertidal and shallow subtidal zones during annual cycles permitted to identify a rich macrofauna which increase considerably the species known in this eastern part of the Mediterranean Sea. More than 50 species are added for the Tunisian fauna. Moreover, patterns of diversity are analysed with the sediment types, presence or absence of Zostera noltei seagrass bed, and human pressures. The list of the collected species are compared with those of surrounding areas in both Western and Eastern Mediterranean Sea.


2016 ◽  
Vol 22 (6) ◽  
pp. 694-707 ◽  
Author(s):  
Stelios Katsanevakis ◽  
Fernando Tempera ◽  
Heliana Teixeira

Sign in / Sign up

Export Citation Format

Share Document