U-Th and radiocarbon chronologies of late Quaternary lacustrine records of the Dead Sea basin: Methods and applications

Author(s):  
Mordechai Stein ◽  
Steven L. Goldstein
2019 ◽  
Vol 32 (4) ◽  
pp. 636-651 ◽  
Author(s):  
Lisa Coianiz ◽  
Uri Schattner ◽  
Guy Lang ◽  
Zvi Ben‐Avraham ◽  
Michael Lazar

2007 ◽  
Vol 68 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Sorin Lisker ◽  
Roi Porat ◽  
Uri Davidovich ◽  
Hanan Eshel ◽  
Stein-Erik Lauritzen ◽  
...  

AbstractThe Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U–Th dated 2.46"0.10 to 2.10"0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46–2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.


2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


Author(s):  
Yin Lu ◽  
Jasper Moernaut ◽  
Revital Bookman ◽  
Nicolas Waldmann ◽  
Nadav Wetzler ◽  
...  

Author(s):  
Claire M. C. Rambeau

Palaeoenvironmental research in the Southern Levant presents a series of challenges, partly due to the unequal distribution of palaeoenvironmental records and potential archives throughout the region. Our knowledge of climatic evolution, during the last approximately 25 000 years, is of crucial importance to understand cultural developments. More local, well-dated, multi-proxy studies are much needed to obtain an accurate picture of environmental change in respect of the Late Pleistocene and the Holocene. This contribution reviews the current state of knowledge regarding Late Quaternary palaeoenvironmental changes in the Southern Levant, including some examples of more recent developments in palaeoenvironmental reconstruction in Israel and the Dead Sea area, and introduces the major challenges researchers face in the region. It also presents the first results of a new case study in Jordan, based on an analysis of peaty deposits located in the mountain slopes east of the Dead Sea. Such new studies help refine our knowledge of local environmental changes in the Southern Levant and especially the more arid areas, for which little information is presently available. More material suitable for palaeoenvironmental research, for example extensive tufa and travertine series, still awaits consideration in Jordan, opening up exciting perspectives for future research in the area.


Sign in / Sign up

Export Citation Format

Share Document