Evidence for a large middle Holocene flood event in the Pacific southwestern United States (Lake Elsinore, California)

Author(s):  
M.E. Kirby ◽  
W.P. Patterson ◽  
L. Ivanovici ◽  
D. Sandquist ◽  
K.C. Glover
2015 ◽  
Vol 28 (9) ◽  
pp. 3846-3856 ◽  
Author(s):  
Hye-Mi Kim ◽  
Michael A. Alexander

Abstract The vertically integrated water vapor transport (IVT) over the Pacific–North American sector during three phases of ENSO in boreal winter (December–February) is investigated using IVT values calculated from the Climate Forecast System Reanalysis (CFSR) during 1979–2010. The shift of the location and sign of sea surface temperature (SST) anomalies in the tropical Pacific Ocean leads to different atmospheric responses and thereby changes the seasonal mean moisture transport into North America. During eastern Pacific El Niño (EPEN) events, large positive IVT anomalies extend northeastward from the subtropical Pacific into the northwestern United States following the anomalous cyclonic flow around a deeper Aleutian low, while a southward shift of the cyclonic circulation during central Pacific El Niño (CPEN) events induces the transport of moisture into the southwestern United States. In addition, moisture from the eastern tropical Pacific is transported from the deep tropical eastern Pacific into Mexico and the southwestern United States during CPEN. During La Niña (NINA), the seasonal mean IVT anomaly is opposite to that of two El Niño phases. Analyses of 6-hourly IVT anomalies indicate that there is strong moisture transport from the North Pacific into the northwestern and southwestern United States during EPEN and CPEN, respectively. The IVT is maximized on the southeastern side of a low located over the eastern North Pacific, where the low is weaker but located farther south and closer to shore during CPEN than during EPEN. Moisture enters the southwestern United States from the eastern tropical Pacific during NINA via anticyclonic circulation associated with a ridge over the southern United States.


2013 ◽  
Vol 141 (12) ◽  
pp. 4322-4336 ◽  
Author(s):  
Kimberly M. Wood ◽  
Elizabeth A. Ritchie

Abstract A dataset of 167 eastern North Pacific tropical cyclones (TCs) is investigated for potential impacts in the southwestern United States over the period 1989–2009 and evaluated in the context of a 30-yr climatology. The statistically significant patterns from empirical orthogonal function (EOF) analysis demonstrate the prevalence of a midlatitude trough pattern when TC-related rainfall occurs in the southwestern United States. Conversely, the presence of a strong subtropical ridge tends to prevent such events from occurring and limits TC-related rainfall to Mexico. These statistically significant patterns correspond well with previous work. The El Niño–Southern Oscillation phenomenon is shown to have some effect on eastern North Pacific TC impacts on the southwestern United States, as shifts in the general circulation can subsequently influence which regions receive rainfall from TCs or their remnants. The Pacific decadal oscillation may have a greater influence during the period of study as evidenced by EOF analysis of sea surface temperature anomalies.


1994 ◽  
Vol 42 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Dean W. Blinn ◽  
Richard H. Hevly ◽  
Owen K. Davis

AbstractThis study presents the first continuous record of fossil diatoms taken from an open spring-mound in southwestern United States. Diatoms were analyzed from a radiocarbon-dated core taken from Montezuma Well, a near thermally constant spring in northcentral Arizona. Fluctuations in total diatom density, oscillations in the relative abundance of Anomoeoneis sphaerophora, and intermittent deposition of calcite suggest that water levels in Montezuma Well underwent dramatic fluctuations to the degree of being intermittently dry, or at least very shallow, during the middle Holocene (∼8000-5000 yr B.P.). The fluctuations in water level probably correspond to oscillations in regional temperature and precipitation, which regulate hydrologic input and evaporation rates. The dramatic fluctuations in water level during the middle Holocene suggest that the endemic biota of Montezuma Well underwent relatively rapid speciation within the past ∼5000 yr. The appearance of endemic species (Gomphonema montezumense and Cyclotella pseudostelligera f. parva ) at ∼5000-3000 yr B.P. supports this hypothesis. Diatom indicators for organic enrichment (Aulacoseira granulata and A. islandica) closely coincide with the prehistoric native occupation of Montezuma Well.


2020 ◽  
Vol 33 (7) ◽  
pp. 2485-2508 ◽  
Author(s):  
Peter B. Gibson ◽  
Duane E. Waliser ◽  
Bin Guan ◽  
Michael J. DeFlorio ◽  
F. Martin Ralph ◽  
...  

AbstractPersistent winter ridging events are a consistent feature of meteorological drought across the western and southwestern United States. In this study, a ridge detection algorithm is developed and applied on daily geopotential height anomalies to track and quantify the diversity of individual ridge characteristics (e.g., position, frequency, magnitude, extent, and persistence). Three dominant ridge types are shown to play important, but differing, roles for influencing the location of landfalling atmospheric rivers (ARs), precipitation, and subsequently meteorological drought. For California, a combination of these ridge types is important for influencing precipitation deficits on daily through seasonal time scales, indicating the various pathways by which ridging can induce drought. Furthermore, both the frequency of ridge types and reduced AR activity are necessary features for explaining drought variability on seasonal time scales across the western and southwestern regions. The three ridge types are found to be associated in different ways with various remote drivers and modes of variability, highlighting possible sources of subseasonal-to-seasonal (S2S) predictability. A comparison between ridge types shows that anomalously large and persistent ridging events relate to different Rossby wave trains across the Pacific with different preferential upstream locations of tropical heating. For the “South-ridge” type, centered over the Southwest, a positive trend is found in both the frequency and persistence of these events across recent decades, likely contributing to observed regional drying. These results illustrate the utility of feature tracking for characterizing a wider range of ridging features that collectively influence precipitation deficits and drought.


2018 ◽  
Vol 33 (2) ◽  
pp. 238-254 ◽  
Author(s):  
M. E. Kirby ◽  
L. Heusser ◽  
C. Scholz ◽  
R. Ramezan ◽  
M. A. Anderson ◽  
...  

2017 ◽  
Vol 30 (13) ◽  
pp. 4891-4896 ◽  
Author(s):  
Feng Zhang ◽  
Yadong Lei ◽  
Qiu-Run Yu ◽  
Klaus Fraedrich ◽  
Hironobu Iwabuchi

Slow feature analysis is used to extract driving forces from the monthly mean anomaly time series of the precipitation in the southwestern United States (1895–2015). Four major spectral scales pass the 95% confidence test after wavelet analysis of the derived driving forces. Further harmonic analysis indicates that only two fundamental frequencies are dominant in the spectral domain. The frequencies represent the influence of the Pacific decadal oscillation (PDO) and solar activity on the precipitation from the southwestern United States. In addition, solar activity has exerted a greater effect than the PDO on the precipitation in the southwestern United States over the past 120 years. By comparing the trend of droughts with the two fundamental frequencies, it is found that both the droughts in the 1900s and in the twenty-first century were affected by the PDO and solar activity, whereas the droughts from the 1950s to the 1970s were mainly affected by solar activity.


Sign in / Sign up

Export Citation Format

Share Document