Recent advancements in geochronology, geologic mapping, and landslide characterization in basement rocks of the San Gabriel Mountains block

Author(s):  
Jonathan A. Nourse ◽  
Brian J. Swanson ◽  
Alexander D. Lusk ◽  
Nicolas C. Barth ◽  
Joshua J. Schwartz ◽  
...  
2020 ◽  
Vol 57 (4) ◽  
pp. 375-388
Author(s):  
Ryan Bessen ◽  
Jennifer Gifford ◽  
Zack Ledbetter ◽  
Sean McGuire ◽  
Kyle True ◽  
...  

This project involved the construction of a detailed geologic map of the Park Reservoir, Wyoming 7.5-Minute Quadrangle (Scale 1:24,000). The Quadrangle occurs entirely in the Bighorn National Forest, which is a popular recreation site for thousands of people each year. This research advances the scientific understanding of the geology of the Bighorn Mountains and the Archean geology of the Wyoming Province. Traditional geologic mapping techniques were used in concert with isotopic age determinations. Our goal was to further subdivide the various phases of the 2.8–3.0 Ga Archean rocks based on their rock types, age, and structural features. This research supports the broader efforts of the Wyoming State Geological Survey to complete 1:24,000 scale geologic maps of the state. The northern part of the Bighorn Mountains is composed of the Bighorn batholith, a composite complex of intrusive bodies that were emplaced between 2.96–2.87 Ga. Our mapping of the Park Reservoir Quadrangle has revealed the presence of five different Archean quartzofeldspathic units, two sets of amphibolite and diabase dikes, a small occurrence of the Cambrian Flathead Sandstone, two Quaternary tills, and Quaternary alluvium. The Archean rock units range in age from ca. 2.96–2.75 Ga, the oldest of which are the most ancient rocks yet reported in the Bighorn batholith. All the Archean rocks have subtle but apparent planar fabric elements, which are variable in orientation and are interpreted to represent magmatic flow during emplacement. The Granite Ridge tear fault, which is the northern boundary of the Piney Creek thrust block, is mapped into the Archean core as a mylonite zone. This relationship indicates that the bounding faults of the Piney Creek thrust block were controlled by weak zones within the Precambrian basement rocks.


Author(s):  
Chidiebere Charles Agoha ◽  
Tochukwu Innocent Mgbeojedo ◽  
Eze Martins Okoro ◽  
Francis Begianpuye Akiang ◽  
Chukwuebuka Nnamdi Onwubuariri ◽  
...  

AbstractOutcrop mapping as well as electromagnetic and ground magnetic surveys was carried out within Auchi and Igarra localities in order to attempt an interpretation of the geology of the areas and to delineate the boundary between basement and sedimentary terrains. Geologic mapping was done by collecting samples of outcrops at five different locations within the areas. Three lithofacies were identified within Auchi area and they are the basal shale unit, tabular cross-bedded sandstone unit and ferruginized sandstone unit. The pebbly shale is greyish black in colour; the cross-bedded sandstone unit is greyish white, coarse-grained at the base and finer at the top with pockets of clay, while the ferruginized sandstone is dark red. Rocks of the Precambrian basement complex underlie Igarra area. The area is underlain by metasediments that have been intruded by igneous rocks. Results show the presence of three major groups of igneous and metamorphic rocks within the area, and they are the migmatite–gneiss complex, metasediments and porphyritic granites. The electromagnetic and ground magnetic data acquired along Profile X located along Auchi–Igarra–Ibillo road were processed using Microsoft Excel Software and the resulting plots delineated areas with lower electrical conductivities and higher magnetic susceptibilities, as well as areas with higher electrical conductivities and lower magnetic susceptibilities. The areas with lower electrical conductivities and higher magnetic susceptibilities are interpreted to be underlain by basement rocks, while the areas with higher electrical conductivities and lower magnetic susceptibilities are underlain by sedimentary rocks. The plots also delineated the most likely basement–sedimentary boundary in the area.


Geosphere ◽  
2021 ◽  
Author(s):  
Daniel A. Favorito ◽  
Eric Seedorff

This study investigates the Late Cretaceous through mid-Cenozoic struc­tural evolution of the Catalina core complex and adjacent areas by integrating new geologic mapping, structural analysis, and geochronologic data. Multiple generations of normal faults associated with mid-Cenozoic extensional deformation cut across older reverse faults that formed during the Laramide orogeny. A proposed stepwise, cross-sectional structural reconstruction of mid-Cenozoic extension satisfies surface geologic and reflection seismologic constraints, balances, and indicates that detachment faults played no role in the formation of the core complex and Laramide reverse faults represent major thick-skinned structures. The orientations of the oldest synextensional strata, pre-shortening nor­mal faults, and pre-Cenozoic strata unaffected by Laramide compression indicate that rocks across most of the study area were steeply tilted east since the mid-Cenozoic. Crosscutting relations between faults and synextensional strata reveal that sequential generations of primarily down-to-the-west, mid- Cenozoic normal faults produced the net eastward tilting of ~60°. Restorations of the balanced cross section demonstrate that Cenozoic normal faults were originally steeply dipping and resulted in an estimated 59 km or 120% extension across the study area. Representative segments of those gently dipping faults are exposed at shallow, intermediate (~5–10 km), and deep structural levels (~10–20 km), as distinguished by the nature of deformation in the exhumed footwall, and these segments all restore to high angles, which indicates that they were not listric. Offset on major normal faults does not exceed 11 km, as opposed to tens of kilometers of offset commonly ascribed to “detachment” faults in most interpretations of this and other Cordilleran metamorphic core complexes. Once mid-Cenozoic extension is restored, reverse faults with moderate to steep original dips bound basement-cored uplifts that exhibit significant involvement of basement rocks. Net vertical uplift from all reverse faults is estimated to be 9.4 km, and estimated total shortening was 12 km or 20%. This magnitude of uplift is consistent with the vast exposure of metamorphosed and foliated cover strata in the northeastern and eastern Santa Catalina and Rincon Mountains and with the distribution of subsequently dismembered mid-Cenozoic erosion surfaces along the San Pedro Valley. New and existing geochronologic data constrain the timing of offset on local reverse faults to ca. 75–54 Ma. The thick-skinned style of Laramide shortening in the area is consistent with the structure of surrounding locales. Because detachment faults do not appear to have resulted in the formation of the Catalina core complex, other extensional systems that have been interpreted within the context of detachments may require further structural analyses including identification of crosscutting relations between generations of normal faults and palinspastic reconstructions.


Sign in / Sign up

Export Citation Format

Share Document