MAFIC AND INTERMEDIATE MAGMATISM AT MCDERMITT CALDERA, NEVADA–OREGON: ICELANDITE TRIGGER FOR CALDERA FORMATION

2017 ◽  
Author(s):  
John A. Wolff ◽  
◽  
William A. Starkel ◽  
Christopher D. Henry ◽  
Ben Ellis ◽  
...  
Keyword(s):  
2016 ◽  
Vol 825 ◽  
pp. 165-169
Author(s):  
Michael Somr ◽  
Petr Kabele

The formation of a caldera poses a serious risk for the society and the environment. There are several established processes (mostly dealing with the conditions inside the reservoir), which must take place in order to reach a collapse leading to the caldera. The role of magma chamber geometry is investigated in this paper, exploiting the numerical modeling. The results indicates that the knowledge of the magmatic system dimensions can provide a helpful factor for an assessment of the caldera formation scenario.


2012 ◽  
Vol 19 (6) ◽  
pp. 585-593 ◽  
Author(s):  
L. Sanchez ◽  
R. Shcherbakov

Abstract. Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.


2000 ◽  
Vol 105 (B1) ◽  
pp. 395-416 ◽  
Author(s):  
O. Roche ◽  
T. H. Druitt ◽  
O. Merle

Sign in / Sign up

Export Citation Format

Share Document