scholarly journals Scaling properties of planetary calderas and terrestrial volcanic eruptions

2012 ◽  
Vol 19 (6) ◽  
pp. 585-593 ◽  
Author(s):  
L. Sanchez ◽  
R. Shcherbakov

Abstract. Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

Author(s):  
Jan Zalasiewicz

This is the story of a single pebble. It is just a normal pebble, as you might pick up on holiday - on a beach in Wales, say. Its history, though, carries us into abyssal depths of time, and across the farthest reaches of space. This is a narrative of the Earth's long and dramatic history, as gleaned from a single pebble. It begins as the pebble-particles form amid unimaginable violence in distal realms of the Universe, in the Big Bang and in supernova explosions and continues amid the construction of the Solar System. Jan Zalasiewicz shows the almost incredible complexity present in such a small and apparently mundane object. Many events in the Earth's ancient past can be deciphered from a pebble: volcanic eruptions; the lives and deaths of extinct animals and plants; the alien nature of long-vanished oceans; and transformations deep underground, including the creations of fool's gold and of oil. Zalasiewicz demonstrates how geologists reach deep into the Earth's past by forensic analysis of even the tiniest amounts of mineral matter. Many stories are crammed into each and every pebble around us. It may be small, and ordinary, this pebble - but it is also an eloquent part of our Earth's extraordinary, never-ending story.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


1998 ◽  
Vol 5 (2) ◽  
pp. 93-104 ◽  
Author(s):  
D. Harris ◽  
M. Menabde ◽  
A. Seed ◽  
G. Austin

Abstract. The theory of scale similarity and breakdown coefficients is applied here to intermittent rainfall data consisting of time series and spatial rain fields. The probability distributions (pdf) of the logarithm of the breakdown coefficients are the principal descriptor used. Rain fields are distinguished as being either multiscaling or multiaffine depending on whether the pdfs of breakdown coefficients are scale similar or scale dependent, respectively. Parameter  estimation techniques are developed which are applicable to both multiscaling and multiaffine fields. The scale parameter (width), σ, of the pdfs of the log-breakdown coefficients is a measure of the intermittency of a field. For multiaffine fields, this scale parameter is found to increase with scale in a power-law fashion consistent with a bounded-cascade picture of rainfall modelling. The resulting power-law exponent, H, is indicative of the smoothness of the field. Some details of breakdown coefficient analysis are addressed and a theoretical link between this analysis and moment scaling analysis is also presented. Breakdown coefficient properties of cascades are also investigated in the context of parameter estimation for modelling purposes.


2016 ◽  
Vol 12 (S325) ◽  
pp. 263-265
Author(s):  
Rustam Guliyev ◽  
Ayyub Guliyev

AbstractIn the present work we investigate the possible relationship of long-period comets with five large and distant trans-Neptunian bodies (Sedna, Eris, 2007 OR10, 2012 VP113and 2008 ST291) in order to determine the probability of the transfer of a part of these kind of comets to the inner of the Solar System. To identify such relationships, we studied the relative positions of the comet orbits and listed TNOs. Using numerical integration methods, we examined dynamical evolution of the comets and have found one encounter of comet C/1861J1 and Eris.


2015 ◽  
Vol 6 (2) ◽  
pp. 2323-2337
Author(s):  
M. Rypdal ◽  
K. Rypdal

Abstract. We show that in order to have a scaling description of the climate system that is not inherently non-stationary, the rapid shifts between stadial and interstadial conditions during the last glaciation cannot be included in the scaling law. The same is true for the shifts between the glacial and interglacial states in the quaternary climate. When these events are omitted from a scaling analysis we find that the climate noise is consistent with a 1/f law on time scales from months to 105 years.


2020 ◽  
Vol 8 ◽  
Author(s):  
B. G. Bukchin ◽  
A. S. Fomochkina ◽  
V. G. Kossobokov ◽  
A. K. Nekrasova

For each of three major M ≥ 7.0 earthquakes (i.e., the January 24, 2016, M7.1 earthquake 86 km E of Old Iliamna; the January 23, 2018, M7.9 earthquake 280 km SE of Kodiak; and the November 30, 2018, M7.1 earthquake 14 km NNW of Anchorage, Alaska), the study considers characterization of the foreshock and aftershock sequences in terms of their variations and scaling properties, including the behavior of the control parameter η of the unified scaling law for earthquakes (USLE), along with a detailed analysis of the surface wave records for reconstruction of the source in the approximation of the second moments of the stress glut tensor to obtain integral estimation of its length, orientation, and development over time. The three major earthquakes at 600 km around Anchorage are, in fact, very different due to apparent complexity of earthquake flow dynamics in the orogenic corner of the Pacific and North America plate boundary. The USLE generalizes the classic Gutenberg-Richter relationship taking into account the self-similar scaling of the empirical distribution of earthquake epicenters. The study confirms the existence of the long-term periods of regional stability of the USLE control parameter that are interrupted by mid- or even short-term bursts of activity associated with major catastrophic events.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Vladimir Cermak ◽  
Alan Beck ◽  
Valiya Hamza

The study of the earth's internal heat plays an important role in understanding the Earth's origin, internal constitution, and plate tectonics. The outflow of heat from the Earth's interior is, energy-wise, the most impressive terrestrial phenomenon. The present rate of heat loss is estimated to be about 1021 joules per year, which is orders of magnitude greater than the energy dissipation of earthquakes or heat loss from volcanic eruptions. Knowledge of terrestrial heat flow is essential in investigating the internal thermal field of the Earth. Initially focus has been on measurements of underground temperatures and thermal properties of geologic materials, assessment of sources and sinks of heat, institution of global data base, development of thermal models of crust and qualification of geothermal energy resources. During later stages, other implications of heat flow studies has also been recognized in fields such as paleoclimatology, global warming, exploration geophysics and hydrogeology. The International Heat Flow Commission – IHFC plays a guiding role in development of such investigations.


1983 ◽  
Vol 73 (1) ◽  
pp. 97-108
Author(s):  
E. Del Pezzo ◽  
F. Ferulano ◽  
A. Giarrusso ◽  
M. Martini

abstract The model developed by Aki and Chouet for the coda wave generation and propagation has been used to calculate the quality factor Q for the zone of the Aeolian Islands, southern Italy, in the frequency range of 1 to 12 Hz, and the scaling properties of the seismic spectrum in the magnitude range of 0.4 to 4.7. The Q found for the Aeolian area has a frequency dependence of the form Q = qfv. The absolute values of Q seem to be dependent on the station and location of the seismic events, confirming the strong lateral heterogeneities in the geological structure beneath the Aeolian Arc. A temporal variation has been noted in the Q calculated at Vulcano station (VPL) in a period of 3 weeks soon after the occurrence of a main shock of ML = 5.5 located near the station. The scaling behavior of this sequence is similar to that obtained in two areas of California and one portion of Japan, with a corner frequency that remains constant with an increasing seismic moment between magnitudes 1 and 4. It differs substantially from the scaling properties of the Hawaian earthquakes that show a linear pattern, without an increase of the stress drop with magnitude. The fact that Vulcano is an active volcano seems not to influence the scaling properties of the seismic sequence localized very near it. It probably indicates that the aftershocks used for calculating the scaling law are generated out of the volcanic complex Lipari-Vulcano, in a zone with a good capability of accumulating the stress.


Author(s):  
David W. Deamer

This book describes a hypothetical process in which populations of protocells can spontaneously assemble and begin to grow and proliferate by energy- dependent polymerization. This might seem to be just an academic question pursued by a few dozen researchers as a matter of curiosity, but in the past three decades advances in engineering have reached a point where both NASA and the European Space Agency (ESA) routinely send spacecraft to other planetary objects in our solar system. A major question being pursued is whether life has emerged elsewhere than on Earth. The limited funds available to support such missions require decisions to be made about target priorities that are guided by judgment calls. These in turn depend on plausible scenarios related to the origin of life on habitable planetary surfaces. We know that other planetary bodies in our solar system have had or do have conditions that would permit microbial life to exist and perhaps even to begin. By a remarkable coincidence, the two most promising objects for extraterrestrial life happen to represent the two alternative scenarios described in this book: An origin of life in conditions of hydrothermal vents or an origin in hydrothermal fields. This final chapter will explore how these alternative views can guide our judgment about where to send future space missions designed as life-detection missions. Questions to be addressed: What is meant by habitability? Which planetary bodies are plausible sites for the origin of life? How do the hypotheses described in this book relate to those sites? There is healthy public interest in how life begins and whether it exists elsewhere in our solar system or on the myriad exoplanets now known to orbit other stars. This has fueled a series of films, television programs, and science fiction novels. Most of these feature extrapolations to intelligent life but a few, such as The Andromeda Strain, explore what might happen if a pathogenic organism from space began to spread to the human population. There is a serious and sustained scientific effort—SETI, or Search for Extraterrestrial Intelligence—devoted to finding an answer to this question.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 291
Author(s):  
Michael Russell ◽  
Adrian Ponce

Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1−x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x−1)O12H2(7−3x)]2+·[(CO2−)·3H2O]2−) and mackinawite (Fe[Ni]S), are vital—comprising precipitate membranes—as initial “free energy” conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2—the staple of life—may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.


Sign in / Sign up

Export Citation Format

Share Document