MASS TRANSFER OF CO2, CA AND NA DRIVEN BY H2O INFILTRATION DURING SUBDUCTION ZONE METAMORPHISM OF THE FRANCISCAN COMPLEX, CALIFORNIA

2017 ◽  
Author(s):  
Sarah C. Penniston-Dorland ◽  
◽  
John M. Ferry
2010 ◽  
Vol 292 (1-2) ◽  
pp. 181-190 ◽  
Author(s):  
Sarah C. Penniston-Dorland ◽  
Sorena S. Sorensen ◽  
Richard D. Ash ◽  
Supriya V. Khadke

2020 ◽  
Author(s):  
Daniel Rutte ◽  
Joshua Garber ◽  
Andrew Kylander-Clark ◽  
Paul Renne

<p>The metamorphic history of exhumed high-grade rocks provides invaluable insight into the thermomechanical processes of subduction zones. While subduction in most orogens has been terminated by continent collision entailing variably strong overprint of related units, the Franciscan Complex of California allows studying a >150 Myr long subduction history that started at ~175 Ma and ended by transformation into a transform plate boundary (San Andreas fault) without significant metamorphic overprint. The highest grade metamorphic rocks of the Franciscan Complex of California are found as blocks in serpentinite and shale matrix mélanges. They include amphibolites, eclogites, blueschists, and blueschist facies metasediments. These Franciscan mélanges inspired the subduction channel return-flow model, but other processes e.g., buoyancy-driven serpentinite diapirism have been argued to be concordant with our current understanding of their metamorphic history, too.</p><p>We investigate a suite of metabasite blocks from serpentinite and shale matrix mélanges of the Califonia Coast Ranges. Our new dataset consists of U-Pb dates of metamorphic zircon and <sup>40</sup>Ar/<sup>39</sup>Ar dates of calcic amphibole and white mica. Combined with published geochronology, particularly prograde Lu-Hf garnet ages from the same blocks, we can reconstruct the timing and time scales of prograde and retrograde metamorphism of individual blocks. We find: (i) Exhumation from the eclogite-amphibolite facies occurred only in a short episode at 165­–160 Ma with an apparent southward younging trend. (ii) Exhumation of the blocks was uniform and fast in the eclogite-amphibolite facies with rates of 2–8 km/Myr. In the blueschist facies exhumation of the blocks was less uniform and slowed by an order of magnitude. (iii) The age of amphibole in a metasomatic reaction zone indicates that at least one amphibolite was enclosed in a serpentinite matrix by ~155 Ma. Considering the entire subduction zone system, the high-grade exhumation temporally correlates with a significant pulse of magmatism in the respective magmatic arc (Sierra Nevada) and termination of forearc spreading (Coast Range Ophiolite).</p><p>Our findings do not support a steady-state process that is continuously exhuming high-grade rocks. Instead the subduction zone system changed with an eventlike character resulting in exhumation of high-grade rocks enclosed in serpentinite.</p>


2021 ◽  
Author(s):  
Miguel Cisneros ◽  
Whitney Behr

<p>In recent years, elastic thermobarometry has gained wider acceptance and utility within the petrologic community and beyond. In particular, quartz-in-garnet (qtz-in-grt) elastic barometry is widely used because of the ubiquity of garnet in metamorphic rocks. The technique is based on using Raman spectroscopy to quantify strains recorded by inclusions, and modeling the elastic evolution of the inclusion-host pair to constrain the initial conditions of inclusion entrapment. Recent studies have validated the technique experimentally by comparing pressures from the qtz-in-grt barometer with experimental conditions of garnet growth and entrapment of quartz, and have shown that the barometer can provide reliable pressure conditions of garnet growth. However, current experimental studies fail to capture the reliability of the technique under disparate pressure (P), temperature (T) and deformation conditions, and studies that systematically compare qtz-in-grt barometry and conventional thermobarometry are lacking. </p><p>In this work, we compare P conditions from qtz-in-grt barometry and conventional thermobarometry from the following locations: spatially and temporally variant high P/T subduction zone eclogite blocks from the Franciscan Complex in California, high P/T subduction zone rocks of varying compositions from Syros, Greece, high P/T and low P/T rocks of varying compositions from the Betics system in Spain, low P/T schists from the Jajarkot and Karnali klippen in the Himalaya, high-P rocks from the Alps, and low P/T metapelites from northeast Nevada. Qtz-in-grt barometry constraints from the Franciscan and Syros show good agreement with some reference P-T conditions, but disagree with some thermodynamic equilibria constraints and subsets of multi-mineral thermobarometry calibrations. Qtz-in-grt barometry constraints from the Himalaya are in excellent agreement with reference P constraints. Measurements of samples from other localities are currently in progress. This set of quartz inclusion analyses further allows us to evaluate the effects of inclusion geometry, anisotropy, P and T conditions of garnet growth, and P and T paths on the ultimate P conditions recorded by the qtz-in-grt barometer. The data-set also provides insights into the possible limitations of other techniques (e.g., conventional thermobarometry).</p>


Sign in / Sign up

Export Citation Format

Share Document