metamorphic overprint
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 23)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Nils F. Jansson ◽  
Rodney L. Allen ◽  
Göran Skogsmo ◽  
Thomas Turner

AbstractUnravelling the genesis of metamorphosed mineral deposits can be complicated due to difficulties in separating between primary features and features that formed during the metamorphic overprint. Such uncertainty exists for stratabound and dolomite- and skarn-hosted Zn-Pb-Ag sulfide deposits in 1.89 Ga rocks in the Bergslagen lithotectonic unit (BLU) of Sweden, where a metasomatic vs. regional metamorphic origin for skarns has long been discussed. By integrating geological mapping with new lithogeochemical, mineralogical, and stable isotope data (C, O, S), we show that complexly zoned garnet and clinopyroxene skarns in the Sala area of the central BLU predate mineralization. Sphalerite-galena mineralization formed after the deposition of a younger, more Mn-rich ferroan diopside and andradite-grossular garnet, and is associated with phlogopite, tremolite-actinolite, chlorite, serpentine, and calcite. Mineralization in conjunction with a transition from high-T metasomatism to hydrolytic alteration is inferred. An average δ34SV-CDT of 1.6 ± 1.9‰ in sulfides is consistent with a primordial sulfur source. Trends defined by negative shifts in δ18OV-SMOW and δ13CV-PDB in dolomite and calcite are consistent with fluid infiltration at 300–500 °C. The alteration system is sharply truncated by unaltered, c. 1.89 Ga calc-alkaline granite and porphyritic intrusions, which along with F1 folding of the alteration zones and mineralization suggest that mineralization predate regional metamorphism. The Sala deposits are interpreted as Zn skarn deposits formed in conjunction with the emplacement of intrusions into penecontemporaneous marine volcanic and dolomitized limestone strata. The unusually Mg-rich mineralogy in relation to Zn skarns worldwide most likely reflects the dolomitic precursor.


Author(s):  
Jeffrey C Pollock ◽  
Douglas N. Reusch ◽  
Greg R. Dunning

The Ellsworth belt is one of several fault-bounded blocks exposed along the southeastern coast of Maine that formed within Ganderia. New ID-TIMS U–Pb geochronological data integrated with field relationships provide additional insights into the timing of magmatism and deformation in the Ellsworth belt. The deformed Lamoine Granite was selected for U–Pb zircon analysis in order to: i) establish the protolith age; ii) provide direct temporal constraints on regional low-grade metamorphism and deformation; and iii) elucidate relationships between the Ellsworth belt and coeval rocks elsewhere in the Appalachian orogen. The Lamoine Granite was emplaced within the Ellsworth Schist at 492 ± 1.7 Ma; this is the first unequivocal evidence for a Furongian magmatic event in the Ellsworth belt. The schistosity in the Lamoine Granite is parallel to the main fabric of the host Ellsworth Schist and provides a maximum estimate for timing of the regional metamorphic overprint. Widespread deformation in the Ellsworth belt where kinematic indicators indicate a top-to-northwest sense of shear is attributed to thrusting during which progressive horizontal shortening, caused crustal thickening and peak greenschist facies metamorphism. The Cambrian U–Pb age permits correlation of the Lamoine Granite with the Cameron Road Granite in the Annidale belt of New Brunswick where subduction-related magmas intruded the Penobscot arc–back-arc and were subsequently deformed during the Penobscot Orogeny.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 638
Author(s):  
Kurt Krenn ◽  
Martina Husar ◽  
Anna Mikulics

Fluid inclusions (FIs) and associated solids in host minerals garnet, tourmaline, spodumene, and quartz from six pegmatite fields of Permian origin at Koralpe (Eastern Alps) have been investigated. Although pegmatites suffered intense Eoalpine high-pressure metamorphic overprint during the Cretaceous period, the studied samples originate from rock sections with well-preserved Permian magmatic textures. Magmatic low-saline aqueous FIs in garnet domains entrapped as part of an unmixed fluid together with primary N2-bearing FIs that originate from a host rock-derived CO2-N2 dominated high-grade metamorphic fluid. This CO2-N2 fluid is entrapped as primary FIs in garnet, tourmaline, and quartz. During host mineral crystallization, fluid mixing between the magmatic and the metamorphic fluid at the solvus formed CO2-N2-H2O–rich FIs of various compositional degrees that are preserved as pseudo-secondary inclusions in tourmaline, quartz, and as primary inclusions in spodumene. Intense fluid modification processes by in-situ host mineral–fluid reactions formed a high amount of crystal-rich inclusions in spodumene but also in garnet. The distribution of different types of FIs enables a chronology of pegmatite host mineral growth (garnet-tourmaline/quartz-spodumene) and their fluid chemistry is considered as having exsolved from the pegmatite parent melt together with the metamorphic fluid from the pegmatite host rocks. Minimum conditions for pegmatite crystallization of ca. 4.5–5.5 kbar at 650–750 °C have been constrained by primary FIs in tourmaline that, unlike to FIs in garnet, quartz, and spodumene, have not been affected by post-entrapment modifications. Late high-saline aqueous FIs, only preserved in the recrystallized quartz matrix, are related to a post-pegmatite stage during Cretaceous Eoalpine metamorphism.


2021 ◽  
Vol 62 (5) ◽  
pp. 525-546
Author(s):  
A.I. Slabunov ◽  
V.V. Balagansky ◽  
A.A. Shchipansky

Abstract —The Belomorian Province (BP) of the Fennoscandian Shield is a high-grade belt composed of Meso- to Neoarchean tonalite– trondhjemite–granodiorite (TTG) gneisses with subordinate supracrustal complexes. The Belomorian crust is underlined by a thick mantle keel, a structural element typical of Archean cratons. Belomorian rocks were metamorphosed under conditions of mainly high-pressure amphibolite to granulite facies in both Archean and Paleoproterozoic times. The TTG gneisses contain numerous blocks of almost completely retrogressed eclogite (eclogite-1). This paragenetic association of eclogite-1 and gneisses can be classified as an Archean eclogite–TTG gneiss mélange, a component of the Belomorian continental crust produced by subductional, accretionary, and collisional processes of the Belomorian collisional orogeny 2.9–2.66 Ga. The Paleoproterozoic history of the BP comprises of two prominent tectonic periods: (i) early Paleoproterozoic (~2.5–2.4 Ga), related to a superplume, and (ii) late Paleoproterozoic (2.0–1.85 Ga), resulted from crustal reworking during the Lapland–Kola collisional orogeny that produced strong penetrative metamorphic and local deformational overprint. The Paleoproterozoic highest-grade metamorphic overprint is represented by patches of eclogites (eclogite-2) in Paleoproterozoic mafic dikes and eclogite-1. Field relations between eclogite-1 and eclogite-2 are described in the Gridino area of the western coast of the White Sea. So, the BP is a high-grade polymetamorphic belt formed by a superposition of the Neoarchean Belomorian and Paleoproterozoic Lapland–Kola orogenies, whose characteristic features are eclogites produced by subduction and collision.


2021 ◽  
pp. 1-12
Author(s):  
Bidyananda Maibam ◽  
Davide Lenaz ◽  
Stephen Foley ◽  
Jasper Berndt ◽  
Elena Belousova ◽  
...  

Abstract The Sargur Group has been considered to be the oldest group (>3.0 Ga) in the Archaean sequence of the Dharwar Craton in south India, whereas the rocks of the Dharwar Supergroup are younger (between 3.0 and 2.55 Ga). The supracrustal units of the Sargur Group were deposited during the Archaean period. The Banavara quartzite forms part of the supracrustal Sargur Group and contains significant amounts of chromian spinel (Cr-spinel). Here, U–Pb and Hf isotopes of detrital zircons are integrated with compositional data and X-ray refinement parameters for Cr-spinels to decipher the provenance of the metasediments. Zircons show an age spectrum from 3.15 to 2.50 Ga, and juvenile Hf isotopic compositions (ϵHf = +0.8 to +6.4) with model ages between 3.3 and 3.0 Ga. Major- and trace-element contents of the Cr-spinels do not resemble those in the Sargur ultramafic rocks, but resemble well-characterized Archaean anorthosite-hosted chromites. Cr-spinel trace-element signatures indicate that they have undergone secondary alteration or metamorphism. X-ray refinement parameters for the Cr-spinels also resemble the anorthosite-hosted chromites. We conclude that the detrital minerals were probably derived from gneissic and anorthositic rocks of the Western Dharwar Craton, and that the Sargur Group sequences have experienced a younger (2.5 Ga) metamorphic overprint.


2021 ◽  
Vol 33 (2) ◽  
pp. 145-163
Author(s):  
Roland Stalder

Abstract. Research results of the past 6 decades on the incorporation of OH point defects in quartz are summarised and evaluated in terms of their application to natural samples and processes, and a link between experimental petrology, natural archives, and model calculations is made. A strong focus is put on recent studies on quartz as a rock-forming mineral, as a geochemical and/or petrological tracer, and as a tool for provenance analysis in sediments and sedimentary rocks. The most relevant defects for natural specimens are generated by coupled substitution involving mono- and trivalent cations, the most prominent being Li+, Al3+, and B3+. OH incorporation is rather a function of the availability of trace metals and water than of pressure and temperature, though temperature indirectly influences the incorporation by the solubility of trace metals in the fluid. Pressure has a negative influence on the formation of OH defects, so the most pure quartzes are probably formed in the deep crust close to the quartz/coesite transition. Natural quartz grains from the Earth's crust have on average 10 wt ppm (weight parts per million) water (5 wt ppm median), but grains with OH defect contents corresponding to up 250 wt ppm water have been discovered in sedimentary archives, matching the concentration of quartz from high-pressure experiments <4 kbar under water-saturated conditions in granitic systems. A rough division into three classes is suggested: (1) grains with pristine igneous and/or hydrothermal origin, (2) mildly thermally annealed grains, and (3) strongly dehydrated grains. While samples derived from the currently exposed Scandinavian Shield are dominated by the third class, considerable contributions of the first two classes are found in the younger rock systems in Central Europe. OH defect contents may be used to estimate mixing ratios for sediments with different sources, provided that a sufficiently large data set exists and that the different sources can be clearly distinguished by their OH inventory. Furthermore, metamorphic overprint leads to a higher degree of equilibration of OH defects between individual grains and may thus be used as a geothermometer. Finally, OH defect retention in quartz allows for estimating timescales of volcanic processes.


Author(s):  
Gregor Austermann ◽  
Melanie Kling ◽  
Christina Ifrim ◽  
Pascale D. Emondt ◽  
Anne Hildenbrand

The Avalon Peninsula, Newfoundland, Canada, defined as the type zone of Avalonia is believed to have been impacted by several orogenetic and deformation events since the Neoproterozoic. Previous studies determined the lowest degree of metamorphism reached in the successions was of the prehnite-pumpellyite or greenschist facies. We sampled and measured thirteen clastic sedimentary sections ranging from the late Ediacaran to the Early Ordovician and analysed the illite “crystallinity” of 331 samples using the Kübler index. Our results show diagenetic zones occur related to lithology, age and burial depth, respectively, and regional setting. Samples adjacent to the fault zones bounding the Holyrood Horst experienced among the highest degree of metamorphism (anchizone) in the study area. The lowest degree of thermal alteration occurs in the high stratigraphic sections at the centre of the horst structure where shallow diagenetic conditions are preserved. Fault zones, most probably active during the Acadian Orogeny, may have served as potential paths for hot fluids in bounding areas of the horst, whereas the centre of the horst remained almost unaffected by any metamorphic overprint. The thermal impact decreases from the Bonavista Peninsula to the study area from greenschist facies to anchizonal and diagenetic. The study area experienced lower metamorphic conditions than major regions of Avalonia south of the study area on the mainland of New Brunswick and Maine and eastwards in Europe. The thermal impact is in part consistent with a few other areas of Avalonia, such as the Mira terrane and the Antigonish Highlands in Nova Scotia.


2021 ◽  
pp. jgs2020-217
Author(s):  
Alexandre Peillod ◽  
Elof Tehler ◽  
Uwe Ring

Detecting zones of considerable early-orogenic displacement in rather monotonous rock sequences which have undergone a late and pervasive tectonometamorphic overprint is challenging. It has been proposed that the alleged Zas shear zone in the passive-margin sequence of the Cycladic Blueschist Unit (CBU) on Naxos Island, Greece, separates amphibolite-facies, non-high-P rocks (Koronos Unit) below from Eocene high-P rocks (Zas Unit) above the shear zone. We review existing pressure-temperature (P-T) data from the Koronos Unit and present new kinematic data from the anticipated Zas shear zone to evaluate the tectonic significance of this recently proposed structure. This has implications for unravelling the subduction history of rock units from tectonometamorphic data sets. Common to all P-T data from the Koronos Unit is a well-defined amphibolite-facies equilibration stage at 8-11 kbar and 600-700°C, followed by initial near-isothermal to slightly prograde decompression and subsequent pronounced cooling. This segment of the high-T P-T loop was associated with top-to-the-NNE extensional deformation in the footwall of the Miocene Naxos-Paros detachment. Little is known about metamorphism preceding the amphibolite-facies overprint in the Koronos Unit. Our review shows that it is likely that the rocks experienced a prior high-P metamorphic overprint that is typical for rocks of the CBU. Our kinematic data show that the Zas shear zone contains variably deformed rocks with dominantly top-to-the-NNE shear-sense indicators that developed under greenschist-facies metamorphism in the footwall of the Naxos-Paros detachment. No significant offset can be detected across the Zas shear zone and the geology on either side of it does not support large-scale movement across the shear zone. We discuss a model in which the Zas shear zone is considered a minor zone of deformed schist near the biotite-in isograd of Miocene high-T metamorphism. We conclude that there is no need to tectonically subdivide the CBU passive-margin sequence on Naxos.


2021 ◽  
Author(s):  
Eva Santamaría-Pérez ◽  
Idael Francisco Blanco-Quintero ◽  
Agustín Martín-Algarra ◽  
David Benavente ◽  
Juan Carlos Cañaveras ◽  
...  

&lt;p&gt;Jurassic shallow-intrusive basic bodies within the Permian-Triassic Tethyan passive margin sedimentary sequences of the Lower Alpujarride units (Internal Betic Zone, Spain) locally show Alpine low-grade metamorphism in the greenschist and blueschist facies. A small sill-like mafic body near Redov&amp;#225;n town (Callosa Range) partially preserves igneous ophitic/subophitic texture and relics of augite, ferrohornblende-ferroedenite, kaersutite and K-feldspar (orthoclase). The metamorphic overprint corresponds to high-pressure and low-temperature mineral assemblages that comprise magnesioriebeckite, actinolite, albite, stilpnomelane, phengite and chlorite, with rutile, apatite and titanite as accessory minerals. Major and trace element geochemical data reveal igneous protoliths derived from magmas of alkaline basalt composition enriched in incompatible elements and E-MORB geochemical affinity. The intrusion emplacement occurred at shallow crustal levels in an extensional geodynamic setting (within-plate basalts) related to the breakoff of Pangea. Pressure-Temperature (P-T) conditions estimated by means of pseudosection calculations and the intersection of phengite (Si) and chlorite (Mg#) isopleths indicate a cold thermal gradient with calculated peak metamorphic conditions of ca. 8 kbar at 310 &amp;#186;C. These conditions are consistent with metamorphism during burial down to ca. 24 km depth and a thermal gradient of ca. 13 &amp;#186;C/km. Although the easternmost Lower Alpujarride units have been traditionally described as reaching only lower-greenschist to greenschist metamorphic peak conditions, the textures, mineral compositions and P-T conditions of the studied metagabbroic body reveal blueschist facies conditions that attest for a regional early stage (Eocene) of subduction of the lower Alpujarride units. This event predates the late Oligocene - early Miocene subduction-related metamorphism of the Intermediate and Upper Alpujarride units.&lt;/p&gt;


2021 ◽  
Author(s):  
Pauline Jeanneret ◽  
Katarzyna Walczak ◽  
Jarosław Majka ◽  
Michał Bukała ◽  
Simon Cuthbert ◽  
...  

&lt;p&gt;To better understand the subduction&amp;#8211;exhumation cycles of the Baltoscandian margin that reached (U)HP depths during the Caledonian orogeny, we have performed in-situ U-(Th-)Pb dating coupled with REE analysis of zircon and &amp;#177; monazite in four samples from the supracrustal rocks of the Bl&amp;#229;h&amp;#248; Nappe on Gossa island in the Western Gneiss Region (WGR) of Norway. We dated two garnet-plagioclase-biotite gneisses and two garnet-plagioclase-amphibole gneisses. Our research focused on deciphering the early metamorphic evolution of these complex rocks that have been overprinted by exhumation-related structures and pervasive retrogressive metamorphism.&lt;/p&gt;&lt;p&gt;The dated zircon grains are spherical or slightly elongated in shape, some of which display clear multi-stage growth features. Only one grain armored by garnet preserved an older detrital core that yielded early Neoproterozoic dates between 1.1-1.0 Ga. This grain does not provide any Caledonian signal. Younger individual &lt;sup&gt;20&lt;/sup&gt;&lt;sup&gt;6&lt;/sup&gt;Pb/&lt;sup&gt;2&lt;/sup&gt;&lt;sup&gt;38&lt;/sup&gt;U dates show three distinct populations that yield three concordia ages, each obtained from distinctly different compositional domains, the oldest from cores and the two youngest from overgrowths. The cores are characterized by HREE enrichment (high Lu/Gd ratios ca. 14.5), high Th/U ratios (&gt; 0.1), and large Eu anomalies. They yield a concordia age of 474 &amp;#177; 6.4 Ma. These cores can be rimmed by two different types of zircon overgrowth. The first overgrowth type (1) displays the same REE pattern as the cores and gives a concordia age of 444&amp;#177; 4.3 Ma. The second overgrowth type (2) shows a very weak Eu anomaly, no HREE enrichment (low Lu/Gd ratios ca. 2.37) and a very low Th/U ratios (&lt;0.1). These yield a concordia age of 416&amp;#177; 3.7 Ma. The two older U&amp;#8211;Pb zircon age populations are tentatively interpreted as reflecting two distinct metamorphic events or a prolonged episode of metamorphism. The youngest concordant metamorphic zircon dates a high grade, probably (U)HP, metamorphic overprint at ca. 416 Ma, subsequent to the previous events. Analyses performed on monazite provided complementary age records to those obtained on zircon. Monazite grains are weakly zoned, exhibit wormy shapes and are aligned with the youngest foliation. Th&amp;#8211;U&amp;#8211;total Pb dating of monazite, coupled with major and trace element mapping of monazite, yielded a very homogeneous age of 382 &amp;#177; 1.6 Ma (n=65) interpreted to date the late shearing, which possibly accommodated a late stage of exhumation.&lt;/p&gt;&lt;p&gt;Funded by the National Science Centre (Poland) project no. 2014/14/E/ST10/00321.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document