quartz inclusion
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 458
Author(s):  
Suzanne R. Mulligan ◽  
Elissaios Stavrou ◽  
Stella Chariton ◽  
Oliver Tschauner ◽  
Ashkan Salamat ◽  
...  

The equation of state (EoS) of a natural almandine74spessartine13pyrope10grossular3 garnet of a typical composition found in metamorphic rocks in Earth’s crust was obtained using single crystal synchrotron X-ray diffraction under isothermal room temperature compression. A third-order Birch-Murnaghan EoS was fitted to P-V data and the results are compared with published EoS for iron, manganese, magnesium, and calcium garnet compositional end-members. This comparison reveals that ideal solid solution mixing can reproduce the EoS for this intermediate composition of garnet. Additionally, this new EoS was used to calculate geobarometry on a garnet sample from the same rock, which was collected from the Albion Mountains of southern Idaho. Quartz-in-garnet elastic geobarometry was used to calculate pressures of quartz inclusion entrapment using alternative methods of garnet mixing and both the hydrostatic and Grunëisen tensor approaches. QuiG barometry pressures overlap within uncertainty when calculated using EoS for pure end-member almandine, the weighted averages of end-member EoS, and the EoS presented in this study. Grunëisen tensors produce apparent higher pressures relative to the hydrostatic method, but with large uncertainties.


2021 ◽  
Author(s):  
Mattia Gilio ◽  
Nicola Campomenosi ◽  
Kira A. Musiyachenko ◽  
Ross J. Angel ◽  
Bernardo Cesare ◽  
...  

<p>Elastic geo-thermobarometry allows the retrieval of the pressure and temperature of entrapment of an inclusion within a host (Zhang, 1998; Angel et al., 2014; Angel et al., 2015). So far, quartz-in-garnet elastic geobarometry has mainly dealt with rocks with inclusions entrapped at high pressure and low temperature conditions, such as eclogite. This is because, at high-temperature (HT) and low-to-medium-pressure conditions (T > 700 °C and P < 1.0 GPa), the rock might cross the α–β quartz transition, changing the elastic properties of quartz inclusions. Here we will show some preliminary results of HT elastic geobarometry in quartz inclusions entrapped (or re-equilibrated) within the β–quartz stability field.<br>The analysed samples come from three HT-LP terranes: the Athabasca granulite terrane in Canada (Dumond et al., 2015), the Jubrique Unit in the Beltic Cordilliera in Spain (Barich et al., 2014), and the Aus granulite terrane from the Namaqua metamorphic complex in Southern Namibia (Diener et al., 2013). These terrains include crustal rocks such as garnet-bearing gneisses and felsic and mafic granulites that equilibrated at low pressures and high temperatures, near or within the β-quartz stability field. Within these samples, Cesare et al. (2020) described post-entrapment shape change of quartz inclusion in garnet. The quartz inclusions have Raman spectra with peaks shifted to lower wavenumbers with respect to the unstrained reference quartz crystal. The changes in Raman peak shifts of the inclusions were converted into strains using the software StRAinMAN (Angel et al., 2019) and have positive volume strains with ε1>0 and ε3<0. The quartz EoS by Angel et al. (2017), which includes the α–β quartz transition, allowed the entrapment isomekes crossing the phase transition to be calculated and the entrapment pressures of quartz inclusions at HT to be estimated. The results of elastic geobarometry for the set of samples in question are consistent with the PT estimates by classic geothermobarometry, suggesting entrapment or re-equilibration at HT within the β–quartz stability field.<br>This work was supported by ERC-StG TRUE DEPTHS grant (number 714936) to M. Alvaro</p><p>References<br>Angel et al. (2014) - Am. Mineral. 99, 2146-2149. Angel et al. (2015) - J. Metamorph. Geol. 33, 801-813. Angel et al. (2017) - Contrib. Mineral. Petr. 172, 29. Angel et al. (2019) - Z. Krist.-Cryst. Mater. 234, 129-140. Barich et al. (2014) - Lithos 206, 303-320. Cesare et al. (2020) - Earth Planet. Sc. Lett. 555, 116708. Diener et al. (2013) - Precambrian Res. 224, 629-652. Dumond et al. (2015) - J. Metamorph. Geol. 33, 735-762. Zhang (1998) - Earth Planet. Sc. Lett. 157, 209-222.</p>


2021 ◽  
Author(s):  
Miguel Cisneros ◽  
Whitney Behr

<p>In recent years, elastic thermobarometry has gained wider acceptance and utility within the petrologic community and beyond. In particular, quartz-in-garnet (qtz-in-grt) elastic barometry is widely used because of the ubiquity of garnet in metamorphic rocks. The technique is based on using Raman spectroscopy to quantify strains recorded by inclusions, and modeling the elastic evolution of the inclusion-host pair to constrain the initial conditions of inclusion entrapment. Recent studies have validated the technique experimentally by comparing pressures from the qtz-in-grt barometer with experimental conditions of garnet growth and entrapment of quartz, and have shown that the barometer can provide reliable pressure conditions of garnet growth. However, current experimental studies fail to capture the reliability of the technique under disparate pressure (P), temperature (T) and deformation conditions, and studies that systematically compare qtz-in-grt barometry and conventional thermobarometry are lacking. </p><p>In this work, we compare P conditions from qtz-in-grt barometry and conventional thermobarometry from the following locations: spatially and temporally variant high P/T subduction zone eclogite blocks from the Franciscan Complex in California, high P/T subduction zone rocks of varying compositions from Syros, Greece, high P/T and low P/T rocks of varying compositions from the Betics system in Spain, low P/T schists from the Jajarkot and Karnali klippen in the Himalaya, high-P rocks from the Alps, and low P/T metapelites from northeast Nevada. Qtz-in-grt barometry constraints from the Franciscan and Syros show good agreement with some reference P-T conditions, but disagree with some thermodynamic equilibria constraints and subsets of multi-mineral thermobarometry calibrations. Qtz-in-grt barometry constraints from the Himalaya are in excellent agreement with reference P constraints. Measurements of samples from other localities are currently in progress. This set of quartz inclusion analyses further allows us to evaluate the effects of inclusion geometry, anisotropy, P and T conditions of garnet growth, and P and T paths on the ultimate P conditions recorded by the qtz-in-grt barometer. The data-set also provides insights into the possible limitations of other techniques (e.g., conventional thermobarometry).</p>


2020 ◽  
Vol 105 (8) ◽  
pp. 1140-1151 ◽  
Author(s):  
Miguel Cisneros ◽  
Kyle T. Ashley ◽  
Robert J. Bodnar

Abstract We have examined the suitability of a quartz-inclusions-in-epidote (qtz-in-ep) mineral barometer to better constrain P-T histories of epidote-bearing lithologies. Theoretical calculations applying an isotropic elastic model suggest that the qtz-in-ep barometer exhibits minimal temperature dependence, and thus, offers the potential to constrain growth conditions of epidote in various geologic environments, including skarn deposits, epidote-bearing granitoids, and metamorphic rocks. To test if the applied equations of state and isotropic elastic model reasonably simulate the elastic evolution of two anisotropic minerals, we measured Raman shifts of the 464 cm–1 band of quartz inclusions relative to that of an unencapsulated quartz standard. We calculated a quartz inclusion pressure (Pincl464) at various temperatures and compared these values with temperature-dependent Pincl predicted by elastic modeling (Pinclmod) at elevated temperatures. Three epidote-bearing samples with reasonably well-constrained P-T histories were also examined: (1) sample HF14C from the Upper Schieferhuelle in the Western Tauern Window, Italy (Pincl464=0.01 GPa); (2) sample LdC-31C from Lago di Cignana, Italy (Pincl464≈0.16 GPa); and (3) sample FT1E from the Frosnitz Tal in the Western Tauern region, Austria (Pincl464=0.57 GPa). Entrapment pressures (Pent464) calculated from Pincl464 determined at various temperatures show nominal differences from Pent calculated from Pinclmod, suggesting that for qtz-in-ep pairs, the calculated Pent does not significantly vary with the temperature of measurement. Furthermore, our calculated Pent464 for a sample from the Upper Schieferhuelle is in agreement with petrographic context and previously established P conditions, and the Pent464 determined for the Frosnitz Tal sample closely approximate previously reported pressures. The Lago di Cignana sample is derived from an epidote vein that is encased in a high-P foliation, and the calculated Pent464 is consistent with early, low-P epidote vein formation that pre-dates high-P metamorphism, or alternatively, late vein formation during exhumation, and confirms that the epidote did not form at or near peak conditions (~2.0 GPa). The results of this study indicate that the qtz-in-ep barometer potentially provides another tool that geoscientists can employ to better constrain P-T conditions in some epidote-bearing environments, where conventional thermobarometric techniques cannot be applied.


2020 ◽  
Vol 61 (8) ◽  
Author(s):  
Oliver M Wolfe ◽  
Frank S Spear

Abstract A comparative analysis of Raman shifts of quartz inclusions in garnet was made along two traverses across the Connecticut Valley Trough (CVT) in western New England, USA, to examine the regional trends of quartz inclusion in garnet (QuiG) Raman barometry pressure results and to compare this method with conventional thermobarometry and the method of intersecting garnet core isopleths. Overall, Raman shifts of quartz inclusions ranged from 1·2 to 3·5 cm–1 over all field areas and displayed a south to north decrease, matching the overall decrease in mapped metamorphic grade. Raman shifts of quartz inclusions typically did not show systematic variation with respect to their radial position within a garnet crystal, and indicate that garnet probably grew at nearly isothermal and isobaric pressure–temperature (P–T) conditions. The P–T conditions inferred from conventional thermobarometry were in the range of ∼500–575 °C and ∼7·4–10·3 kbar over the sample suite and are in good agreement with previous published thermobarometry throughout the CVT. These P–T results are broadly consistent with QuiG barometry and also suggest that garnet grew isothermally and isobarically at near peak P–T conditions. However, P–T conditions and P–T paths inferred using either garnet core thermobarometry or garnet core intersecting isopleths yield results that are internally inconsistent and generally disagree with the pressure results from QuiG barometry. Garnet core isopleth intersections consistently plotted between the nominal garnet-in curve on mineral assemblage diagrams and the P–T conditions constrained by QuiG isomekes for the majority of the sample suite. Additionally, most samples’ P–T results from QuiG barometry and rim thermobarometry show marked disagreement from those derived from garnet core thermobarometry, compared with the minority that showed agreement within uncertainty. Pressures calculated from QuiG barometry ranged from 8·5 to 9·5 kbar along the traverses in western Massachusetts (MA) and central Vermont (VT) and from 6·5 to 7·5 kbar in northern VT indicating an increase in peak burial of 3–6 km from north to south. Along the western end of the central VT traverse, there are differences in measured Raman shifts and inferred peak pressures of up to 1 kbar across the Richardson Memorial Contact (RMC), indicating a possible fault contact with minor post-peak metamorphic shortening of up to ∼3 km. In contrast, along an east–west traverse in the vicinity of the Goshen Dome, MA, there was little observed variation in Raman shifts across the contact. By contrast, QuiG barometry clearly indicates significant discontinuities in peak pressure east of the Strafford Dome in central VT. This supports the interpretation that post-peak metamorphic shortening was necessary to juxtapose upper staurolite–kyanite zone rocks next to lower garnet zone pelites. Overall, it is concluded that garnet core thermobarometry and garnet core isopleths may provide unreliable results for the P–T conditions of garnet nucleation and inferred P–T paths during garnet growth unless independently verified. The consistency of QuiG results with rim thermobarometry indicates that peak metamorphic conditions previously reported for the CVT using garnet rim thermobarometry are robust and that variation in QuiG barometry results is a valuable tool to analyze structural features within a metamorphic terrane.


2014 ◽  
Vol 41 (3) ◽  
pp. 256-264 ◽  
Author(s):  
Giuseppe Stella ◽  
Dorotea Fontana ◽  
Anna Gueli ◽  
Sebastiano Troja

Abstract The application of Thermally (TL) and Optically (OSL) Stimulated Luminescence on bricks used as building material has allowed solving an chronological issue in the field of historical building dating. The possibility to use one or more methodologies of dating is closely related to the luminescent and granulometric characteristics of the sample. Using some brick samples collected in the church of Sain Seurin in Bordeaux (France), this paper discusses the implications and the possibility to use different approaches and techniques for dating. With this aim luminescence measurements were performed on both polymineral fine grain and quartz inclusion phases extracted from each brick. For Equivalent Dose (ED) and consequently age determination, TL on mixed fine grain fraction (FG), OSL on quartz inclusions (QI) and on mixed fine grain (FG*) fraction, were used. The results obtained suggest the advantage of using OSL technique on fine grain fraction cleaned up by IR stimulation (FG*), but the use of quartz inclusion represents indeed a good alternative.


Sign in / Sign up

Export Citation Format

Share Document