KINEMATICS OF APPARENT REVERSE FAULTS WITHIN EXTENSIONAL TECTONICS: CASE STUDY FROM THE PAHRANAGAT SHEAR ZONE (PSZ), BASIN AND RANGE, NEVADA, USA

2018 ◽  
Author(s):  
Mahmud M. Muhammad ◽  
◽  
Wanda J. Taylor
2013 ◽  
Vol 184 (4-5) ◽  
pp. 405-425 ◽  
Author(s):  
Romain Augier ◽  
Laurent Jolivet ◽  
Damien Do couto ◽  
François Negro

Abstract Relations between Alpine detachment-bounded metamorphic domes, crustal-scale strike-slip fault zones and sedimentary basins in the Internal zones of the Betic cordillera are still matter of debate. Current tectonic interpretations of these basins vary from late-orogenic extensional structures to compressional ones associated with strike-slip motions along major still active faults. Structural investigations including new field mapping, meso-scale faults recognition, palaeostress analysis of brittle small-scale faults systems were performed in the sedimentary cover of the Almanzora corridor and the Huércal-Overa basins, located either in the hanging wall unit of the Filabres extensional shear zone or at the termination of the Alhama de Murcia sinistral fault zone. In parallel, a detailed study of the ductile and the ductile-brittle deformation was carried out in the footwall unit of the Filabres extensional shear zone, in the Nevado-Fílabride complex. Three main brittle events were recognised in the basin cover including two extensional events that occurred prior to a weak tectonic inversion of the basin during a third, still active event. The first one, D1b is characterized by the development a first stress regime consistent with ~NW-SE extensional tectonics. Besides, the consistency between the latest ductile and the brittle kinematics for the Filabres extensional shear zone and the activity of meso-scale fault systems that primarily control the main SW-NE depocentres allow concluding to a top-to-the-NW continuum of strain during the final exhumation of the Nevado-Filábride complex. The resulting overall half-graben architecture of the basins is then related to the combination of the formation of the metamorphic domes that added a local control superimposed on the regional deformation. Indeed, after a consistent top-to-the-west shearing prevailing during most of the Nevado-Filábride exhumation, final exhumation stages were in turn, characterised by important kinematics changes with a subordinate top-to-the-NW sense of shear (D1b). The onset of sedimentation in the basins occurred shortly after the crossing of the ductile-brittle transition in the underlying metamorphic domes at ca. 14 Ma into SW-NE fault-bounded troughs. Tectonic subsidence was then maintained during D2b while extensional kinematics changed to N-S or even locally to SSW-NNE. Extensional tectonics then lasted most of the Tortonian during the final tectonic denudation increments of the Sierra de los Filabres achieved at ca. 9-8 Ma. Intramontane basins are therefore genuinely extensional and clearly related to the latest exhumation stages of the Nevado-Filábride complex in the back-arc domain. Conversely, at ca. 8 Ma, basins started to record a ~N-S to NNW-SSE compressional stress regime (D3b) and ceased to be active depocentres while shortening within the Internal zones then recorded only the Iberia/Africa convergence. The weak inversion of the basins however resulted either in the reactivation of originally extensional faults such as the Alhama de Murcia fault or the basin individualisation and a progressive water exchange reduction with the Atlantic ocean and is thus proposed to be directly responsible for the Late Miocene salinity crises.


2009 ◽  
Vol 158 (5) ◽  
pp. 637-657 ◽  
Author(s):  
Christopher L. Kirkland ◽  
Martin J. Whitehouse ◽  
Trond Slagstad
Keyword(s):  

Geologos ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 171-190 ◽  
Author(s):  
Roman Farkašovský ◽  
Katarína Bónová ◽  
Marián Košuth

Abstract Strong tectonic remobilisation and shear zone development are typical features of the easternmost part of the Veporicum tectonic unit in the Western Carpathians. The granodiorite mylonites in the area of the Rolovská shear zone (Čierna hora Mts) underwent a complex polystage evolution during the Hercynian and Alpine orogenies. Deformation during the latter reached greenschist facies under metamorphic conditions. Mylonites are macroscopically foliated rocks with a stretching lineation and shear bands. Structurally different mylonite types, ranging from protomylonites to ulramylonites with typical grainsize reduction from the margins towards the shear zone centre, have been assessed. The modal mineralogy of the different mylonite types changes considerably. Typical is a progressive decrease in feldspar content and simultaneously the quartz and white mica content increases from protomylonites towards the most strongly deformed ultramylonites. The deformation had a brittle character in less deformed rocks and a ductile one in more deformed tectonites. Obvious chemical changes occur in mesomylonites and ultramylonites. During mylonitisation, the original biotite granodiorite was depleted of Mg, Fe, Na, Ca and Ba, while K, Rb and mainly Si increased considerably. Other (major and trace) elements reflect erratic behaviour due to lateral mobility. Chemical changes indicate the breakdown and subsequent recrystallisation of biotite and feldspars and, in turn, the crystallisation of albite and sericite. REE decrease in ultramylonites due to the breakup of accessory minerals during deformation and alteration.


2017 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle-ductile transition and seismogenesis. In subduction environment, switching in deformation mode and mechanisms may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). On the other hand, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyzes an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-protomylonite during deformation in subduction-related environment. The studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow slip structures. Our case-study represents, therefore, a fossil example of association of fault structures related with stick-slip strain accomodation during subduction of continental crust.


Sign in / Sign up

Export Citation Format

Share Document