Ancestral trans−North American Bell River system recorded in late Oligocene to early Miocene sediments in the Labrador Sea and Canadian Great Plains

Author(s):  
Julia I. Corradino ◽  
Alex Pullen ◽  
Andrew L. Leier ◽  
David L. Barbeau Jr. ◽  
Howie D. Scher ◽  
...  

The Bell River hypothesis proposes that an ancestral, transcontinental river occupied much of northern North America during the Cenozoic Era, transporting water and sediment from the North American Cordillera to the Saglek Basin on the eastern margin of the Labrador Sea. To explore this hypothesis and reconstruct Cenozoic North American drainage patterns, we analyzed detrital zircon grains from the Oligocene−Miocene Mokami and Saglek formations of the Saglek Basin and Oligocene−Miocene fluvial conglomerates in the Great Plains of western Canada. U-Pb detrital zircon age populations in the Mokami and Saglek formations include clusters at <250 Ma, 950−1250 Ma, 1600−2000 Ma, and 2400−3200 Ma. Detrital zircons with ages of <250 Ma were derived from the North American Cordillera, supporting the transcontinental Bell River hypothesis. Oligocene−Miocene fluvial strata in western Canada contain detrital zircon age populations similar to those in the Saglek Basin and are interpreted to represent the western headwaters of the ancient Bell River drainage. Strontium-isotope ratios of marine shell fragments from the Mokami and Saglek formations yielded ages between 25.63 and 18.08 Ma. The same shells have εNd values of −10.2 to −12.0 (average = −11.2), which are consistent with values of Paleozoic strata in western North America but are more radiogenic than the modern Labrador Current, Labrador Sea Water, and North Atlantic Deep Water values (εNd ∼−12 to −25). As a freshwater source, the existence and termination of the Bell River may have been important for Labrador Sea circulation, stratification, and chemistry.

2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


1994 ◽  
Vol 31 (6) ◽  
pp. 919-942 ◽  
Author(s):  
Giselle K. Jakobs ◽  
Paul L. Smith ◽  
Howard W. Tipper

This is the second in a series of papers intended to establish a Lower Jurassic ammonite zonation that takes into account the biostratigraphic and biogeographic peculiarities of the North American succession. In North America the lower boundary of the Toarcian is drawn at the first appearance of Dactylioceras above the last occurrence of Amaltheus and Fanninoceras. The lower Toarcian is represented by the Kanense Zone; the middle Toarcian by the Planulata and Crassicosta zones; and the upper Toarcian by the Hillebrandti and Yakounensis zones. Section 5 on the Yakoun River in the Queen Charlotte Islands is designated the stratotype for the Planulata, Crassicosta, and Hillebrandti zones; section 3 on the Yakoun River is designated the stratotype for the Yakounensis Zone; an ideal stratotype for the Kanense Zone is not presently known. Reference sections further illustrating the faunal associations that characterize the zones are designated in eastern Oregon (Snowshoe Formation) and northern British Columbia (Spatsizi Group). The Dactylioceratidae, Harpoceratinae, and Hildoceratinae provide the most important zonal indicators for the lower Toarcian; Dactylioceratidae, Phymatoceratinae, and Bouleiceratinae for the middle Toarcian; and Phymatoceratinae, Grammoceratinae, and Hammatoceratinae for the upper Toarcian. Phymatoceras hillebrandti is described as a new species.


2017 ◽  
Vol 54 (2) ◽  
pp. 69-85 ◽  
Author(s):  
David Malone ◽  
John Craddock ◽  
Kacey Garber ◽  
Jarek Trela

The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.


2021 ◽  
Author(s):  
Ling Zou ◽  
Lars Hoffmann ◽  
Sabine Griessbach ◽  
Lunche Wang

<p>Cirrus clouds in the stratosphere (SCCs) regulate the water vapor budget in the stratosphere, impact the stratosphere and tropopshere exchange, and affect the surface energy balance. But the knowledge of its occurrence and formation mechanism is limited, especially in middle and high latitudes. In this study, we aim to assess the occurrence frequencies of SCC over North America based on The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. </p><p>Results show that at nighttime, SCCs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with maximum occurrence frequency of 6.2%. During the months from November to February (NDJF), the highest SCCs occurrence frequencies are 5.5% over the North-Eastern Pacific, western Canada and 4.4% over the western North Atlantic. Occurrence frequencies of deep convection and strong storm systems from AIRS show similar hotspots like the SCCs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4%) and over the North-Eastern Pacific, western Canada and the western North Atlantic in NDJF (~2.5%). Both, seasonal patterns and daily time series of SCCs and deep convection show a high degree of spatial and temporal correlation. As further analysis indicates that the maximum fraction of SCCs generated by deep convection is 74% over the Great Plains in MJJA and about 50% over the western North Atlantic, the North-Eastern Pacific and western Canada in NDJF, we conclude that, locally and regionally, deep convection is a leading factor for the formation of SCCs over North America. Other studies stressed the relevance of isentropic transport, double tropopause events, or gravity waves for the formation of SCCs. </p><p>In this study, we also analyzed the impact of gravity waves as a secondary formation mechanism for SCCs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In case of SCCs that are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate in as much as 30% of the cases over the Great Plains in MJJA, about 50% over the North-Eastern Pacific, western Canada and maximally 90% over eastern Canada and the north-west Atlantic in NDJF. </p><p>Our results provide better understanding of the physical processes and climate variability related to SCCs and will be of interest for modelers as SCC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models. </p>


1961 ◽  
Vol 93 (6) ◽  
pp. 450-455 ◽  
Author(s):  
Leonard A. Kelton

Recent study of the male genitalia in the Miridae (Kelton, 1959) showed that the Palearctic Stenodema virens (L.) does not occur in North America. The six other species that have been reported in the North American literature are: dorsolis (Say), vicinum (Prov.), trispinosum Reut., sequoiae Bliven, falki Bliven, and imperii Bliven. The three species described by Bliven (1955, 1958) were not available to me for study, however, Bliven (1960) has recently published a paper containing figures of the male genital claspers of these species. These appear to differ considerably from those of virens, vicinum and trispinosum as well as amongst themselves.


2014 ◽  
Vol 41 (2) ◽  
pp. 207 ◽  
Author(s):  
Robert S. Hildebrand

Geological evidence, including the presence of two passive margin platforms, juxtaposed and mismatched deformation between North America and more outboard terranes, as well as the lack of rift deposits, suggest that North America was the lower plate during both the Sevier and Laramide events and that subduction dipped westward beneath the Cordilleran Ribbon Continent (Rubia). Terranes within the composite ribbon continent, now present in the Canadian Cordillera, collided with western North America during the 125–105 Ma Sevier event and were transported northward during the ~80–58 Ma Laramide event, which affected the Cordillera from South America to Alaska. New high-resolution mantle tomography beneath North America reveals a huge slab wall that extends vertically for over 1000 km, marks the site of long-lived subduction, and provides independent verification of the westward-dipping subduction model. Other workers analyzed paleogeographic trajectories and concluded that the initial collision took place in Canada at about 160 Ma – a time and place for which there is no deformational thickening on the North American platform – and later farther west where subduction was not likely westward, but eastward. However, by utilizing a meridionally corrected North American paleogeographic trajectory, coupled with the geologically most reasonable location for the initial deformation, the position of western North America with respect to the relict superslab parsimoniously accounts for the timing and extents of both the Sevier and Laramide events. SOMMAIRELes indications géologiques, en particulier la présence de deux marges de plateforme passives, de déformations adjacentes non-conformes entre l’Amérique du Nord et les terranes extérieurs, ainsi que l’absence de gisements de rift, permet de croire que l’Amérique du Nord était la plaque sous-jacente durant les événements de Sevier et de Laramide et que la subduction plongeait vers l’ouest sous le continent rubané de la Cordillères (Rubia).  Les terranes du continent rubané composite, maintenant au sein de la Cordillère canadienne, sont entrés en collision avec l’ouest de l’Amérique du Nord durant l’événement Sevier (125-105 Ma), et ont été transportés vers le nord durant l’événement Laramide (~80–58 Ma), laquelle a affecté la Cordillère, de l’Amérique du Sud à l’Alaska.  Une nouvelle tomographie haute résolution du manteau sous l’Amérique du Nord montre la présence d’un gigantesque mur de plaques vertical qui s’étend sur 1 000 km, marque le site d’une subduction de longue haleine, et offre une validation indépendante du modèle d’une subduction à pendage vers l’ouest.  D’autres chercheurs ont analysé les trajectoires paléogéographiques et conclu que la collision initiale s’est produite au Canada vers 160 Ma – un moment et un endroit sans épaississement par déformation sur la plateforme d’Amérique du Nord – et plus tard plus à l’ouest, là où la subduction n’était vraisemblablement pas vers l’ouest, mais vers l’est.  Cela dit, en considérant une trajectoire paléogéographique de l’Amérique du Nord corrigée longitudinalement, avec la position géologique la plus probable de la déformation initiale, la position de la portion ouest de l’Amérique du Nord par rapport aux restes de la super-plaque explique alors facilement la chronologie et l’étendue des épisodes Sevier et Laramide.


Sign in / Sign up

Export Citation Format

Share Document