ASSESSING LATE QUATERNARY DEFORMATION ACROSS THE SOUTHERN RIO GRANDE RIFT WITH THE USE OF HIGH-RESOLUTION PHOTOGRAMMETRY

2019 ◽  
Author(s):  
Ronny Gene Sholdt ◽  
◽  
Reed J. Burgette
Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1457-1478
Author(s):  
Brad D. Sion ◽  
Fred M. Phillips ◽  
Gary J. Axen ◽  
J. Bruce J. Harrison ◽  
David W. Love ◽  
...  

Abstract The Rio Grande rift hosts a remarkable record of Quaternary river incision preserved in an alluvial terrace sequence that has been studied for more than a century. However, our understanding of Rio Grande incision history in central New Mexico since the end of basin filling ca. 0.78 Ma remains hampered by poor age control. Robust correlations among Rio Grande terrace sequences in central and southern New Mexico are lacking, making it difficult to address important process-related questions about terrace formation in continental-scale river systems. We present new age controls using a combination of 40Ar/39Ar, 36Cl surface-exposure, and 14C dating techniques from alluvial deposits in the central New Mexico Socorro area to document the late Quaternary incision history of the Rio Grande. These new age controls (1) provide constraints to establish a firm foundation for Socorro basin terrace stratigraphy, (2) allow terrace correlations within the rift basin, and (3) enable testing of alternative models of terrace formation. We identified and mapped a high geomorphic surface interpreted to represent the end of basin filling in the Socorro area and five distinct, post–Santa Fe Group (ca. 0.78 Ma) alloformations and associated geomorphic surfaces using photogrammetric methods, soil characterization, and stratigraphic descriptions. Terrace deposits exhibit tread heights up to 70 m above the valley floor and are 5 to >30 m thick. Their fills generally have pebble-to-cobble bases overlain by fine-to-pebbly sand and local thin silt and clay tops. Alluvial-fan terraces and associated geomorphic surfaces grade to former valley levels defined by axial terrace treads. Carbon-14 ages from detrital charcoal above and below a buried tributary terrace tread show that the most recent aggradation event persisted until ca. 3 ka during the transition from glacial to modern climate conditions. Drill-log data show widespread valley fill ∼30 m thick that began aggrading after glacial retreat in northern New Mexico and southern Colorado (ca. 14 ka). Aggradation during this transition was likely due to hillslope destabilization, increased sediment yield, decreased runoff, and reduced stream competence. Chlorine-36 ages imply similar controls on earlier terraces that have surface ages of ca. 27–29, 64–70, and 135 ka, and suggest net incision during glacial expansions when increased runoff favored down-cutting and bedload mobilization. Our terrace chronology supports existing climate-response models of arid environments and links tributary responses to the axial Rio Grande system throughout the central Rio Grande rift. The terrace chronology also reflects a transition from modest (60 m/m.y.) to rapid (300 m/m.y.) incision between 610 and 135 ka, similar to patterns observed throughout the Rio Grande rift and the western United States in general.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. B209-B221
Author(s):  
Heather Barnes ◽  
Johnny R. Hinojosa ◽  
Glenn A. Spinelli ◽  
Peter S. Mozley ◽  
Daniel Koning ◽  
...  

We have combined electrical resistivity tomography (ERT), geologic information from boreholes and outcrops, and hydrogeologic data to investigate field-scale fault-zone cementation of the Loma Blanca Fault in the Rio Grande Rift. We have collected electrical resistivity data from 16 transects and geologic samples from 29 boreholes (completed as groundwater wells to 30 m depth) across and around the fault. The 2D ERT profiles, whose interpretations are constrained by geologic data, indicate (1) a high resistivity zone in cemented portions of the fault below the water table and (2) in the unsaturated zone, a low-resistivity feature along the cemented portions of the fault. The high-resistivity zone below the water table is consistent with a 10% reduction in porosity due to the fault zone cementation. With the same porosity in the unsaturated zone, the low-resistivity feature in the cemented fault zone is consistent with saturation >0.7, in contrast to saturation 0.2–0.7 for sediment outside of the cemented fault zone. In addition, subsurface samples and ERT profiles delineate a buttress unconformity (i.e., steeply dipping erosional contact) corresponding to a paleovalley margin. This unconformity truncates the cemented fault zone and separates Pliocene axial-fluvial sand (deposited by an ancestral Rio Grande) from late Quaternary sand and gravel (deposited by the Rio Salado, a Rio Grande tributary). The cemented fault zone in the southern portion of the study area is a hydrogeologic barrier; north of the buttress unconformity, where the cemented fault zone has been removed by erosion, the fault is not a hydrogeologic barrier. The integration of geologic, geophysical, and hydrogeologic observations is key to developing our understanding of this complex system, and it allows us to demonstrate the utility of ERT in detecting subsurface fault-zone cementation.


Sign in / Sign up

Export Citation Format

Share Document