scholarly journals Late Quaternary activity of the Pajarito fault, Rio Grande rift of northern New Mexico, USA

2005 ◽  
Vol 408 (1-4) ◽  
pp. 213-236 ◽  
Author(s):  
James P. McCalpin
Geosphere ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1457-1478
Author(s):  
Brad D. Sion ◽  
Fred M. Phillips ◽  
Gary J. Axen ◽  
J. Bruce J. Harrison ◽  
David W. Love ◽  
...  

Abstract The Rio Grande rift hosts a remarkable record of Quaternary river incision preserved in an alluvial terrace sequence that has been studied for more than a century. However, our understanding of Rio Grande incision history in central New Mexico since the end of basin filling ca. 0.78 Ma remains hampered by poor age control. Robust correlations among Rio Grande terrace sequences in central and southern New Mexico are lacking, making it difficult to address important process-related questions about terrace formation in continental-scale river systems. We present new age controls using a combination of 40Ar/39Ar, 36Cl surface-exposure, and 14C dating techniques from alluvial deposits in the central New Mexico Socorro area to document the late Quaternary incision history of the Rio Grande. These new age controls (1) provide constraints to establish a firm foundation for Socorro basin terrace stratigraphy, (2) allow terrace correlations within the rift basin, and (3) enable testing of alternative models of terrace formation. We identified and mapped a high geomorphic surface interpreted to represent the end of basin filling in the Socorro area and five distinct, post–Santa Fe Group (ca. 0.78 Ma) alloformations and associated geomorphic surfaces using photogrammetric methods, soil characterization, and stratigraphic descriptions. Terrace deposits exhibit tread heights up to 70 m above the valley floor and are 5 to >30 m thick. Their fills generally have pebble-to-cobble bases overlain by fine-to-pebbly sand and local thin silt and clay tops. Alluvial-fan terraces and associated geomorphic surfaces grade to former valley levels defined by axial terrace treads. Carbon-14 ages from detrital charcoal above and below a buried tributary terrace tread show that the most recent aggradation event persisted until ca. 3 ka during the transition from glacial to modern climate conditions. Drill-log data show widespread valley fill ∼30 m thick that began aggrading after glacial retreat in northern New Mexico and southern Colorado (ca. 14 ka). Aggradation during this transition was likely due to hillslope destabilization, increased sediment yield, decreased runoff, and reduced stream competence. Chlorine-36 ages imply similar controls on earlier terraces that have surface ages of ca. 27–29, 64–70, and 135 ka, and suggest net incision during glacial expansions when increased runoff favored down-cutting and bedload mobilization. Our terrace chronology supports existing climate-response models of arid environments and links tributary responses to the axial Rio Grande system throughout the central Rio Grande rift. The terrace chronology also reflects a transition from modest (60 m/m.y.) to rapid (300 m/m.y.) incision between 610 and 135 ka, similar to patterns observed throughout the Rio Grande rift and the western United States in general.


2019 ◽  
Author(s):  
Benjamin J. Drenth ◽  
◽  
V.J.S. Grauch ◽  
Kenzie J. Turner ◽  
Brian D. Rodriguez ◽  
...  

1990 ◽  
Vol 6 (4) ◽  
pp. 657-680 ◽  
Author(s):  
Charles E. Glass

Estimates of the probability of future earthquake activity are difficult to make in areas where historical seismicity may be low or absent, but where young fault scarps attest to recent or ongoing tectonism. Three non-Poisson models, a Weibull model, a Gaussian model and a lognormal model, are used to estimate the earthquake hazard for one such area, the northern Rio Grande Rift. This portion of the Rio Grande Rift displays numerous Holocene faults attesting to ongoing tectonism, but displays essentially no historical seismicity. The earthquake hazard for the Sangre de Cristo fault zone from Taos, New Mexico to Salida, Colorado calculated using these models is remarkably consistent (probability of at least one Mo = 7 earthquake in the next 50 years ∼ 2.5 × 10−3), with increased hazard for the Sangre de Cristo fault in north San Luis Valley (∼5.0×10−3) and near Taos (∼1.0×10−2) due to the long holding times along these segments.


1976 ◽  
Vol 66 (3) ◽  
pp. 877-886
Author(s):  
Tousson R. Toppozada ◽  
Allan R. Sanford

abstract Interpretation of a seismic profile extending 548 km southward from the GASBUGGY nuclear test of December 10, 1967 resulted in a crustal model for central New Mexico. The crust is 39.9 km thick below the Paleozoic “basement”. It consists of an upper crust 18.6 km thick having P velocity 6.15 km/sec, and a lower crust 21.3 km thick having P velocity 6.5 km/sec. The apparent upper mantle velocity is 8.12 km/sec. This model applies near the crossover distance, 50 km west of Albuquerque. Additional information from earthquakes and explosions suggests that the upper crustal velocity drops to 5.8 km/sec in the Rio Grande rift, and that the true upper mantle velocity is 7.9 km/sec. The low upper crustal velocity in the Rio Grande rift can be detected on the record section of the GASBUGGY profile.


Sign in / Sign up

Export Citation Format

Share Document