THE DISTRIBUTION OF FLUORINE, CHLORINE, AND HYDROGEN DURING PLANETARY DIFFERENTIATION: IMPLICATIONS FOR APATITE COMPOSITIONS IN PLANETARY MATERIALS

2020 ◽  
Author(s):  
Francis McCubbin ◽  
Author(s):  
Carl B Agee

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2 GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5 GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt is highly dependent on pressure regime. Thus, H 2 O can be thought of as the most compressible ‘liquid oxide’ component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal–liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410 km discontinuity, and, although not required to be hydrous, atop the core–mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200 km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.


2006 ◽  
Vol 69 (8) ◽  
pp. 2365-2441 ◽  
Author(s):  
M J Gillan ◽  
D Alfè ◽  
J Brodholt ◽  
L Vočadlo ◽  
G D Price

Author(s):  
Da Wang ◽  
Richard Carlson

The short-lived 146Sm-142Nd isotope system traces key early planetary differentiation processes that occurred during the first 500 million-years of solar system history. The variations of 142Nd/144Nd in terrestrial samples, typically...


2019 ◽  
Vol 116 (29) ◽  
pp. 14485-14494 ◽  
Author(s):  
Celia Dalou ◽  
Evelyn Füri ◽  
Cécile Deligny ◽  
Laurette Piani ◽  
Marie-Camille Caumon ◽  
...  

The present-day nitrogen isotopic compositions of Earth’s surficial (15N-enriched) and deep reservoirs (15N-depleted) differ significantly. This distribution can neither be explained by modern mantle degassing nor recycling via subduction zones. As the effect of planetary differentiation on the behavior of N isotopes is poorly understood, we experimentally determined N-isotopic fractionations during metal–silicate partitioning (analogous to planetary core formation) over a large range of oxygen fugacities (ΔIW −3.1 < logfO2 < ΔIW −0.5, where ΔIW is the logarithmic difference between experimental oxygen fugacity [fO2] conditions and that imposed by the coexistence of iron and wüstite) at 1 GPa and 1,400 °C. We developed an in situ analytical method to measure the N-elemental and -isotopic compositions of experimental run products composed of Fe–C–N metal alloys and basaltic melts. Our results show substantial N-isotopic fractionations between metal alloys and silicate glasses, i.e., from −257 ± 22‰ to −49 ± 1‰ over 3 log units of fO2. These large fractionations under reduced conditions can be explained by the large difference between N bonding in metal alloys (Fe–N) and in silicate glasses (as molecular N2 and NH complexes). We show that the δ15N value of the silicate mantle could have increased by ∼20‰ during core formation due to N segregation into the core.


Sign in / Sign up

Export Citation Format

Share Document