GEOLOGIC AND GEOPHYSICAL CHARACTERIZATION OF THE BARTLETT SPRINGS FAULT ZONE (CALIFORNIA): IMPLICATIONS FOR FAULT BEHAVIOR AND EVOLUTION OF A MAJOR STRIKE-SLIP FAULT

2020 ◽  
Author(s):  
Victoria Langenheim ◽  
◽  
Robert McLaughlin ◽  
Benjamin L. Melosh
Eos ◽  
2000 ◽  
Vol 81 (28) ◽  
pp. 309 ◽  
Author(s):  
Ibrahim Çemen ◽  
Ergun Gökten ◽  
Baki Varol ◽  
Recep Kiliç ◽  
Volkan Özaksoy ◽  
...  

2004 ◽  
Vol 26 (9) ◽  
pp. 1615-1632 ◽  
Author(s):  
Guillermo Booth-Rea ◽  
José-Miguel Azañón ◽  
Antonio Azor ◽  
Vı́ctor Garcı́a-Dueñas

2020 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-144
Author(s):  
Ziyi Wang ◽  
Zhiqian Gao ◽  
Tailiang Fan ◽  
Hehang Zhang ◽  
Lixin Qi ◽  
...  

The SB1 strike-slip fault zone, which developed in the north of the Shuntuo Low Uplift of the Tarim Basin, plays an essential role in reservoir formation and hydrocarbon accumulation in deep Ordovician carbonate rocks. In this research, through the analysis of high-quality 3D seismic volumes, outcrop, drilling and production data, the hydrocarbon-bearing characteristics of the SB1 fault are systematically studied. The SB1 fault developed sequentially in the Paleozoic and formed as a result of a three-fold evolution: Middle Caledonian (phase III), Late Caledonian–Early Hercynian and Middle–Late Hercynian. Multiple fault activities are beneficial to reservoir development and hydrocarbon filling. In the Middle–Lower Ordovician carbonate strata, linear shear structures without deformation segments, pull-apart structure segments and push-up structure segments alternately developed along the SB1 fault. Pull-apart structure segments are the most favourable areas for oil and gas accumulation. The tight fault core in the centre of the strike-slip fault zone is typically a low-permeability barrier, whilst the damage zones on both sides of the fault core are migration pathways and accumulation traps for hydrocarbons, leading to heterogeneity in the reservoirs controlled by the SB1 fault. This study provides a reference for hydrocarbon exploration and development of similar deep-marine carbonate reservoirs controlled by strike-slip faults in the Tarim Basin and similar ancient hydrocarbon-rich basins.


Solid Earth ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 95-124 ◽  
Author(s):  
Bernhard Schuck ◽  
Anja M. Schleicher ◽  
Christoph Janssen ◽  
Virginia G. Toy ◽  
Georg Dresen

Abstract. New Zealand's Alpine Fault is a large, plate-bounding strike-slip fault, which ruptures in large (Mw>8) earthquakes. We conducted field and laboratory analyses of fault rocks to assess its fault zone architecture. Results reveal that the Alpine Fault Zone has a complex geometry, comprising an anastomosing network of multiple slip planes that have accommodated different amounts of displacement. This contrasts with the previous perception of the Alpine Fault Zone, which assumes a single principal slip zone accommodated all displacement. This interpretation is supported by results of drilling projects and geophysical investigations. Furthermore, observations presented here show that the young, largely unconsolidated sediments that constitute the footwall at shallow depths have a significant influence on fault gouge rheological properties and structure.


Sign in / Sign up

Export Citation Format

Share Document