INSIGHT INTO THE MAGMATIC SYSTEM OF A RECONSTRUCTED LARGE IGNEOUS PROVINCE AT 2.11 GA ACROSS SUPERCRATON SUPERIA

2020 ◽  
Author(s):  
Sarah Davey ◽  
◽  
Wouter Bleeker ◽  
Sandra L. Kamo ◽  
Richard E. Ernst ◽  
...  
2019 ◽  
Vol 56 (2) ◽  
pp. 158-174 ◽  
Author(s):  
Carol A. Evenchick ◽  
Jennifer M. Galloway ◽  
Benoit M. Saumur ◽  
William J. Davis

New data and interpretations on geological relationships of igneous rocks at Mokka Fiord, Axel Heiberg Island, Nunavut, provide insight into the timing and nature of magmatism associated with the Sverdrup Basin and High Arctic Large Igneous Province (HALIP). Field relationships indicate that the igneous rocks, previously interpreted to be volcanic flows, are most likely an intrusive unit discordant to regional bedding. An intrusive origin helps resolve chronostratigraphic inconsistencies in previous work. The host rocks are palynologically constrained to be late Barremian to late Aptian in age and are interpreted to be Paterson Island or Walker Island member of the Isachsen Formation. If the igneous body is intrusive, it’s previously reported Ar–Ar age (102.5 ± 2.6 Ma) is no longer in conflict with accepted stratigraphic interpretations and probably reflects the emplacement age of the intrusion. Lingering uncertainties in interpreting the normal and reverse magnetic polarities determined in the previous work remain, and both are considered viable. Although this uncertainty precludes definitive conclusions on the significance of paleomagnetic data at Mokka Fiord, examination of the stratigraphic, paleomagnetic, and geochronologic relationships there highlight potential for the study of excursions, or reversed magnetic polarity subchrons, in the Cretaceous Normal Superchron elsewhere in the HALIP.


2020 ◽  
Author(s):  
Zhaochong Zhang ◽  
Zhiguo Cheng ◽  
Weiliang Kong ◽  
Bingxiang Liu ◽  
Zhenchao Wang ◽  
...  

2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


Sign in / Sign up

Export Citation Format

Share Document