Late Cretaceous magmatism in the NW Lhasa Terrane, southern Tibet: Implications for crustal thickening and initial surface uplift

2019 ◽  
Vol 132 (1-2) ◽  
pp. 334-352 ◽  
Author(s):  
Ming Lei ◽  
Jian-Lin Chen ◽  
Ji-Feng Xu ◽  
Yun-Chuan Zeng ◽  
Qiu-Wei Xiong

Abstract Crustal thickening and uplift of southern Tibet have been widely associated with India-Asia continental collision during the Cenozoic. However, recent studies indicated that the crust of the northwestern (NW) Lhasa Terrane was thickened during the late Mesozoic. Here we report geochronological and geochemical data for the Gaerqiong diorite porphyries (GPs) and Xiongma plutons (XPs) in the NW Lhasa terrane, southern Tibet. Zircon U-Pb dating suggests that these intrusive rocks were generated at ca. 85 and ca. 88 Ma, respectively. The GPs are characterized by high MgO, Cr, and Ni contents, and they have adakitic affinities. These geochemical features, combined with their depleted εNd(t) (+1.7 to +2.0), 87Sr/86Sr(i) (0.705103–0.705259), and zircon εHf(t) (+5.2 to +10.2) isotopic compositions, indicate that the GPs were produced by partial melting of the delaminated juvenile continental crust. In contrast, the XPs are composed of host granites and mafic microgranular enclaves (MMEs). The MMEs have low SiO2 and high MgO contents, and low εHf(t) (–14.0 to –5.8) values, indicating that their parental magmas were derived from an enriched mantle. The host granites have high SiO2 and low MgO contents, and variable εNd(t) (–7.4 to –6.3) and zircon εHf(t) (–11 to –4.1) values. These observations, combined with the presence of MMEs in the Xiongma granites, suggest that the host granites were the result of mixing of crust- and mantle-derived magmas. Detailed study of these two plutons, combined with the previous researches, suggests that Late Cretaceous (ca. 90 Ma) magmatism in the NW Lhasa Terrane occurred in a post-collisional extensional setting related to delamination of the regionally thickened lithosphere after collision of the Lhasa-Qiangtang Terranes. We propose that the crust of the NW Lhasa Terrane reached a maximum thickness (average of >50 km) before the Late Cretaceous (ca. 90 Ma). This crustal thickening was caused by underplating of mafic magmas during slab roll-back and break-off of the southward-subducting Bangong-Nujiang oceanic lithosphere and subsequent tectonic thrusting during Qiangtang-Lhasa Terrane collision, respectively. Given that crustal thickening generally results in elevated terrain, the regional uplift (driven by isostasy due to crustal thickening) probably commenced before the Late Cretaceous (ca. 90 Ma).

2021 ◽  
Author(s):  
Christian Weidle ◽  
Lars Wiesenberg ◽  
Andreas Scharf ◽  
Philippe Agard ◽  
Amr El-Sharkawy ◽  
...  

<p>The Semail Ophiolite is the world<span>‘</span>s largest and best exposed oceanic lithosphere on land and a primary reference site for studies of creation of oceanic lithosphere, initiation of subduction, geodynamic models of obduction, subduction and exhumation of continental rocks during obduction. Five decades of geological mapping, structural, petrological and geochronological research provide a robust understanding of the geodynamic evolution of the shallow continental crust in northern Oman and how the late Cretaceous obduction process largely shaped the present-day landscape. Yet, prior to obduction, other first-order tectonic processes have left their imprint in the lithosphere, in particular the Neoproterozoic accretion of Arabia and Permian breakup of Pangea. Due to the scarcity of deep structure imaging below the ophiolite, the presence and significance of inherited structures for the obduction process remain unclear.</p><p>We discuss a new 3-D anisotropic shear wave velocity model of the crust below northern Oman derived from ambient noise tomography and Receiver Function analysis which allows to <span>resolve</span> some key unknowns in geodynamics of eastern Arabia: (1) <span>Several NE-trending structural boundaries in the middle and lower crust are attributed to the Pan-African orogeny and align with first-order lateral changes in surface geology and topography.</span> (2) The well-known Semail Gap Fault Zone is an upper crustal feature whereas two other deep crustal faults are newly identified. (3) Permian rifting occurred on both eastern and northern margins but large-scale mafic intrusions and/or underplating occurred only in the east. (4) While obduction is inherently lithospheric by nature, its effects <span>are mostly observed at shallow crustal depths, and lateral variations in its geometry and dynamics can be explained by effects on pre-existing Pan-African and Permian structures. (5) Continental subduction and exhumation during late Cretaceous obduction may be the cause for crustal thickening below today‘s topography.</span> (6) Thinning of the continental lithosphere below northern Oman in late Eocene times – possibly related to thermal effects of the incipient Afar mantle plume - provides a plausible mechanism for the broad emergence of the Oman Mountains and in particular the Jabal Akhdar Dome. Uplift might thus be unrelated to compressional tectonics during Arabia-Eurasia convergence as previously believed.</p>


2008 ◽  
Vol 145 (6) ◽  
pp. 845-857 ◽  
Author(s):  
TAI-PING ZHAO ◽  
MEI-FU ZHOU ◽  
JUN-HONG ZHAO ◽  
KAI-JUN ZHANG ◽  
WEI CHEN

AbstractThe Rutog granitic pluton lies in the Gangdese magmatic arc in the westernmost part of the Lhasa Terrane, NW Tibet, and has SHRIMP zircon U–Pb ages of c. 80 Ma. The pluton consists of granodiorite and monzogranite with SiO2 ranging from 62 to 72 wt% and Al2 O3 from 15 to 17 wt%. The rocks contain 2.33–4.93 wt% K2O and 3.42–5.52 wt% Na2O and have Na2O/K2O ratios of 0.74–2.00. Their chondrite-normalized rare earth element (REE) patterns are enriched in LREE ((La/Yb)n = 15 to 26) and do not show significant Eu anomalies (δEu = 0.68–1.15). On a primitive mantle-normalized trace element diagram, the rocks are rich in large ion lithophile elements (LILE) and poor in high field strength elements (HFSE), HREE and Y. Their Sr/Y ratios range from 15 to 78 with an average of 30. The rocks have constant initial 87Sr/86Sr ratios (0.7045 to 0.7049) and slightly positive ɛNd(t) values (+0.1 to +2.3), similar to I-type granites generated in an arc setting. The geochemistry of the Rutog pluton is best explained by partial melting of a thickened continental crust, triggered by underplating of basaltic magmas in a mantle wedge. The formation of the Rutog pluton suggests flat subduction of the Neo-Tethyan oceanic lithosphere from the south. Crustal thickening may have occurred in the Late Cretaceous prior to the India–Asia collision.


Author(s):  
Lu-Lu Hao ◽  
Qiang Wang ◽  
Andrew C. Kerr ◽  
Jin-Hui Yang ◽  
Lin Ma ◽  
...  

The nature and timing of post-collisional crustal thickening and its link to surface uplift in the eastern Lhasa block of the southern Tibetan plateau remain controversial. Here we report on Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. The Eocene (ca. 46 Ma) trachyandesites and trachydacites show slight fractionation of rare earth elements (REE), slightly negative Eu and Sr anomalies, and relatively homogeneous Sr-Nd and zircon Hf isotopes (87Sr/86Sr(i) = 0.7050−0.7063, εNd(t) = −0.92 to −0.03, εHf(t) = +2.6 to +4.8). Previous studies have suggested Neo-Tethys oceanic slab break-off at 50−45 Ma; thus, the Wuyu Eocene magmatism could represent a magmatic response to this slab break-off and originate from relatively juvenile Lhasa crust. The Miocene (ca. 15−12 Ma) dacites and rhyolites have adakitic affinities, e.g., high Sr (average 588 ppm), Sr/Y (29−136), and La/Yb (30−76) values, low Y (4−12 ppm) and Yb (0.4−0.9 ppm) contents, and variable Sr-Nd and zircon Hf isotopes (87Sr/86Sr(i) = 0.7064−0.7142, εNd(t) = −11.7 to −3.7, εHf(t) = −3.2 to +4.5). Their more enriched Sr-Nd-Hf isotopes relative to the Eocene lavas indicate that they should be derived from mixed Lhasa lower crust comprising juvenile crust, ultrapotassic rocks, and probably Indian lower crust-derived rocks. This study has also revealed the transformation from Eocene juvenile and thin crust with a thickness of <40 km to Miocene mixed and thickened crust with a thickness of >50 km. Combined with published tectonic data, we suggest that both lithospheric shortening and magma underplating contributed to eastern Lhasa block post-collisional crustal thickening. Given the spatial-temporal distribution of eastern Lhasa block magmatism and regional geology, we invoke a post-collisional tectonic model of steep subduction of the Indian plate and subsequent westward-propagating plate break-off beneath the eastern Lhasa block, which caused the surface uplift.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Di-Cheng Zhu ◽  
Qing Wang ◽  
Zhi-Dan Zhao ◽  
Sun-Lin Chung ◽  
Peter A. Cawood ◽  
...  

Abstract New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80–40 Ma migrated from south to north and then back to south with significant mantle input at 70–43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52–51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma.


Sign in / Sign up

Export Citation Format

Share Document