semail ophiolite
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 2)

Geosphere ◽  
2021 ◽  
Author(s):  
Bruce Levell ◽  
Michael Searle ◽  
Adrian White ◽  
Lauren Kedar ◽  
Henk Droste ◽  
...  

Late Cretaceous obduction of the Semail ophiolite and underlying thrust sheets of Neo-Tethyan oceanic sediments onto the submerged continental margin of Oman involved thin-skinned SW-vergent thrusting above a thick Guadalupian–Cenomanian shelf-carbonate sequence. A flexural foreland basin (Muti and Aruma Basin) developed due to the thrust loading. Newly available seismic reflection data, tied to wells in the Gulf of Oman, suggest indirectly that the trailing edge of the Semail Ophiolite is not rooted in the Gulf of Oman crust but is truncated by an ENE-dipping extensional fault parallel to the coastline. This fault is inferred to separate the Semail ophiolite to the SW from in situ oceanic Gulf of Oman crust to the NE. It forms the basin margin to a “hinterland” basin formed atop the Gulf of Oman crust, in which 5 km of Late Cretaceous deep-water mudstones accumulated together with 4 km of Miocene and younger deep-water mudstones and sandstones. Syndepositional folding included Paleocene–Eocene folds on N-S axes, and Paleocene to Oligocene growth faults with roll-over anticlines, along the basin flank. Pliocene compression formed, or tightened, box folds whose axes parallel the modern coast with local south-vergent thrusts and reversal of the growth faults. This Pliocene compression resulted in large-scale buckling of the Cenozoic section, truncated above by an intra-Pliocene unconformity. A spectacular 60-km-long, Eocene(?) to Recent, low-angle, extensional, gravitational fault, down-throws the upper basin fill to the north. The inferred basement of the hinterland basin is in situ Late Cretaceous oceanic lithosphere that is subducting northwards beneath the Makran accretionary prism.


2021 ◽  
Author(s):  
Marguerite Godard ◽  
Elliot J Carter ◽  
Thierry Decrausaz ◽  
Romain Lafay ◽  
Emma Bennett ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
S. Pilia ◽  
A. Kaviani ◽  
M. P. Searle ◽  
P. Arroucau ◽  
M. Y. Ali ◽  
...  

2021 ◽  
Author(s):  
Simone Pilia ◽  
Simone Pilia ◽  
A youb Kaviani ◽  
Mike Searle ◽  
Pierre Arroucau ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Benjamin Eickmann ◽  
Crispin T. S. Little ◽  
Jörn Peckmann ◽  
Paul D. Taylor ◽  
Adrian J. Boyce ◽  
...  

Abstract Serpentinization of ultramafic rocks in the sea and on land leads to the generation of alkaline fluids rich in molecular hydrogen (H2) and methane (CH4) that favour the formation of carbonate mineralization, such as veins in the sub-seafloor, seafloor carbonate chimneys and terrestrial hyperalkaline spring deposits. Examples of this type of seawater–rock interaction and the formation of serpentinization-derived carbonates in a shallow-marine environment are scarce, and almost entirely lacking in the geological record. Here we present evidence for serpentinization-induced fluid seepage in shallow-marine sedimentary rocks from the Upper Cretaceous (upper Campanian to lower Maastrichtian) Qahlah Formation at Jebel Huwayyah, United Arab Emirates. The research object is a metre-scale structure (the Jebel Huwayyah Mound) formed of calcite-cemented sand grains, which formed a positive seafloor feature. The Jebel Huwayyah Mound contains numerous vertically orientated fluid conduits containing two main phases of calcite cement. We use C and O stable isotopes and elemental composition to reconstruct the fluids from which these cements precipitated and infer that the fluids consisted of variable mixtures of seawater and fluids derived from serpentinization of the underlying Semail Ophiolite. Based on their negative δ13C values, hardgrounds in the same section as the Jebel Huwayyah Mound may also have had a similar origin. The Jebel Huwayyah Mound shows that serpentinization of the Semail Ophiolite by seawater occurred very soon after obduction and marine transgression, a process that continued through to the Miocene, and, with interaction of meteoric water, up to the present day.


2021 ◽  
Author(s):  
Christian Weidle ◽  
Lars Wiesenberg ◽  
Andreas Scharf ◽  
Philippe Agard ◽  
Amr El-Sharkawy ◽  
...  

<p>The Semail Ophiolite is the world<span>‘</span>s largest and best exposed oceanic lithosphere on land and a primary reference site for studies of creation of oceanic lithosphere, initiation of subduction, geodynamic models of obduction, subduction and exhumation of continental rocks during obduction. Five decades of geological mapping, structural, petrological and geochronological research provide a robust understanding of the geodynamic evolution of the shallow continental crust in northern Oman and how the late Cretaceous obduction process largely shaped the present-day landscape. Yet, prior to obduction, other first-order tectonic processes have left their imprint in the lithosphere, in particular the Neoproterozoic accretion of Arabia and Permian breakup of Pangea. Due to the scarcity of deep structure imaging below the ophiolite, the presence and significance of inherited structures for the obduction process remain unclear.</p><p>We discuss a new 3-D anisotropic shear wave velocity model of the crust below northern Oman derived from ambient noise tomography and Receiver Function analysis which allows to <span>resolve</span> some key unknowns in geodynamics of eastern Arabia: (1) <span>Several NE-trending structural boundaries in the middle and lower crust are attributed to the Pan-African orogeny and align with first-order lateral changes in surface geology and topography.</span> (2) The well-known Semail Gap Fault Zone is an upper crustal feature whereas two other deep crustal faults are newly identified. (3) Permian rifting occurred on both eastern and northern margins but large-scale mafic intrusions and/or underplating occurred only in the east. (4) While obduction is inherently lithospheric by nature, its effects <span>are mostly observed at shallow crustal depths, and lateral variations in its geometry and dynamics can be explained by effects on pre-existing Pan-African and Permian structures. (5) Continental subduction and exhumation during late Cretaceous obduction may be the cause for crustal thickening below today‘s topography.</span> (6) Thinning of the continental lithosphere below northern Oman in late Eocene times – possibly related to thermal effects of the incipient Afar mantle plume - provides a plausible mechanism for the broad emergence of the Oman Mountains and in particular the Jabal Akhdar Dome. Uplift might thus be unrelated to compressional tectonics during Arabia-Eurasia convergence as previously believed.</p>


2021 ◽  
Author(s):  
Simone Pilia ◽  
Simone Pilia ◽  
A youb Kaviani ◽  
Mike Searle ◽  
Pierre Arroucau ◽  
...  

10.1144/m54.6 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThis chapter provides the conclusions/outlines of the tectonics, affecting the Southeastern Oman Mountains, including the Jabal Akhdar and Saih Hatat domes. The main tectonic events include amongst others (1) Neoproterozoic rifting, (2) two distinct early Paleozoic compressive events, (3) large-scale open ‘Hercynian’ folding and formation of a pronounced unconformity during the late Paleozoic, (4) rifting preceding the opening of the Neo-Tethys Ocean during the late Paleozoic, (5) late Cretaceous obduction of the Semail Ophiolite and the response of the Arabian lithosphere as well as (6) post-obductional tectonics. Also of major geological significance are the three major glaciations (Sturtian, Marinoan and Late Paleozoic Gondwana glaciation) which have been recorded in the rocks of northern Oman. Moreover, major lithological, structural and metamorphic differences exist between the Jabal Akhdar and Saih Hatat domes. It appears likely that a major fault, striking parallel to the eastern margin of the Jabal Akhdar Dome, probably originating during Neoproterozoic terrain accretion, acted as a divide between both domes until present. This fault was multiple times reactivated and could explain the differences between the two domes. A catalogue of unanswered questions is included in chronological order to express that many geological aspects need further investigation and future research projects.


10.1144/m54.1 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe extraordinary outcrop conditions provide a unique opportunity to study the geology and tectonics of the Oman Mountains, which record a geological history of more than 800 million years. We provide a summary of the geological evolution of the Oman Mountains with the emphasis on the Jabal Akhdar and Saih Hatat domes. This Memoir comprises seven chapters. This first chapter summarizes the former studies and the tectonic framework. This is followed by a comprehensive description of all geological formations/rock units (Scharf et al. 2021a, Chapter 2, this Memoir) including the famous Semail Ophiolite, the fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and the overall structure (Scharf et al. 2021c, Chapter 4, this Memoir). Chapter 5 (Scharf et al. 2021d) explains the varied tectonic evolution of the study area, ranging from the Neoproterozoic until present, while Chapter 6 (Scharf et al. 2021e) contains the conclusions and a catalogue of open questions. Finally, Chapter 7 (Scharf et al. 2021f) provides two over-sized geological maps (1 : 250 000 version available online) and a correlation chart, providing an overview of the geological units/formations. This volume is of interest for all geoscientists, geoscience students and professionals studying the Oman Mountains on the surface as well as in the subsurface because it represents a comprehensive and detailed reference.


Sign in / Sign up

Export Citation Format

Share Document