Late Holocene slip rate for the North Anatolian fault, Turkey, from cosmogenic 36Cl geochronology: Implications for the constancy of fault loading and strain release rates

Geology ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 867 ◽  
Author(s):  
Özgür Kozaci ◽  
James Dolan ◽  
Robert Finkel ◽  
Ross Hartleb
2020 ◽  
Author(s):  
Zeynep Yılmaz ◽  
Ali Özgün Konca ◽  
Semih Ergintav

<p>The North Anatolian Fault (NAF) produced multiple earthquakes of M>7 throughout the 20th century, while the part of NAF beneath Sea of Marmara did not rupture during this period. Analysis of the Main Marmara Fault's interseismic behavior, the most active branch of the North Anatolian Fault in this region, in terms of locking depth and fault slip rate is critical for evaluating the region's seismic risk with a population of more than 20 million, as it provides information about the seismic moment deficit that may release in a potential future earthquake.</p><p>In this study, we modeled the Main Marmara Fault's interseismic locking with realistic geometry and 3D structure including sedimentary basins, by implementing a 3D finite element approach and using interseismic GPS velocities. We have optimized the fits with GPS data by evaluating cases where each fault segment is constrained by a fault slip rate below a predefined locking depth ranging from 0 to 20 km. Preliminary models reveal that a difference in locking depth is required between the Western Marmara and the eastern end of the Ganos Segment entering the Sea of Marmara. This result, which is consistent with seismicity studies and other previous studies using 1D profiles shows that the strain accumulation under Western Marmara is less and that the locking depths or couplings are not similar in these two segments. For the Princes' Islands Segment, further analysis is required due to complexity in the GPS data. Recent earthquakes along Silivri also indicate that the strain accumulation is complex with most mechanisms showing significant thrust component. We have also calculated various possible strain accumulation patterns and compared the strain rate field around the Main Marmara Fault. Our results show that in most cases the change in the seismicity of each segment is consistent with the interseismic behavior associated with its fault locking.</p><p>(This research has been supported by Boğaziçi University Scientific Research Projects Coordination Unit. Project Number: 15022, 2019)</p>


2019 ◽  
Vol 56 (11) ◽  
pp. 1218-1238 ◽  
Author(s):  
Cengiz Zabcı

The slip history of the North Anatolian Fault (NAF) is constrained by displacement and age data for the last 550 ka. First, I classified all available geological estimates as members of three groups: Model I for the eastern, Model II for the central, and Model III for the western segments where the North Anatolian Shear Zone gradually widens from east to west. The short-term uniform slip solutions yield similar results, 17.5 +4/–3.5 mm/a, 18.9 +3.7/–3.3 mm/a, and 16.9 +1.2/–1.1 mm/a from east to the west. Although these model rates do not show any significant spatial variations among themselves, the correlation with geodetic estimates, ranging between 15 mm/a and 28 mm/a for different sections of the NAF, displays significant discrepancies especially for the central and western segments of the fault. Discrepancies suggest that most strain is accumulated along the NAF, but some portion of it is distributed along secondary structures of the North Anatolian Shear Zone. The deformation rate is constant at least for the last 195 ka, whereas the limited number of data show strain transfer from northern to the southern strand between 195 and 320 ka BP in the Marmara Region when the incremental slip rate decreases to 13.2 +3.1/–2.9 mm/a for the northern strand of the NAF. Considering the possible uncertainties of incremental displacements and their timings, more studies on slip rate are needed at different sites, including major structural elements of the North Anatolian Shear Zone. Although most of the strain is localized along the main displacement zone, the NAF, secondary structures are still capable of generating earthquakes that can hardly reach Mw 7.


2013 ◽  
Vol 40 (17) ◽  
pp. 4555-4559 ◽  
Author(s):  
Hulya Kurt ◽  
C. C. Sorlien ◽  
L. Seeber ◽  
M. S. Steckler ◽  
D. J. Shillington ◽  
...  

2004 ◽  
Vol 227 (3-4) ◽  
pp. 411-426 ◽  
Author(s):  
A. Polonia ◽  
L. Gasperini ◽  
A. Amorosi ◽  
E. Bonatti ◽  
G. Bortoluzzi ◽  
...  

2018 ◽  
Vol 738-739 ◽  
pp. 92-111 ◽  
Author(s):  
Aynur Dikbaş ◽  
H. Serdar Akyüz ◽  
Mustapha Meghraoui ◽  
Matthieu Ferry ◽  
Erhan Altunel ◽  
...  

Author(s):  
R. Civico ◽  
A. Smedile ◽  
D. Pantosti ◽  
F. R. Cinti ◽  
P. M. De Martini ◽  
...  

AbstractThis paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M > 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault.


Sign in / Sign up

Export Citation Format

Share Document