scholarly journals New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs: REPLY

Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. e514-e514
Author(s):  
Michael C. Jollands ◽  
Elias Bloch ◽  
Othmar Müntener
Author(s):  
Kari M. Cooper

The thermal and therefore physical state of magma bodies within the crust controls the processes and time scales required to mobilize magmas before eruptions, which in turn are critical to hazard assessment. Crystal records can be used to reconstruct magma reservoir histories, and the resulting time and length scales are converging with those accessible through numerical modelling of magma system dynamics. The goal of this contribution is to summarize constraints derived from crystal chronometry (radiometric dating and modelling intracrystalline diffusion durations), in order to facilitate use of these data by researchers in other fields. Crystallization ages of volcanic minerals typically span a large range (10 4 –10 5  years), recording protracted activity in a given magma reservoir. However, diffusion durations are orders of magnitude shorter, indicating that the final mixing and assembly of erupted magma bodies is rapid. Combining both types of data in the same samples indicates that crystals are dominantly stored at near- or sub-solidus conditions, and are remobilized rapidly prior to eruptions. These observations are difficult to reconcile with some older numerical models of magma reservoir dynamics. However, combining the crystal-scale observations with models which explicitly incorporate grain-scale physics holds great potential for understanding dynamics within crustal magma reservoirs. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’.


SEG Discovery ◽  
2000 ◽  
pp. 1-20
Author(s):  
JEREMY P. RICHARDS

ABSTRACT Large-scale crustal lineaments are recognized as corridors (up to 30 km wide) of aligned geological, structural, geomorphological, or geophysical features that are distinct from regional geological trends such as outcrop traces. They are commonly difficult to observe on the ground, the scale of the features and their interrelationships being too large to map except at a regional scale. They are therefore most easily identified from satellite imagery and geophysical (gravity, magnetic) maps. Lineaments are believed to be the surface expressions of ancient, deep-crustal or trans-lithospheric structures, which periodically have been reactivated as planes of weakness during subsequent tectonic events. These planes of weakness, and in particular their intersections, may provide high-permeability channels for ascent of deeply derived magmas and fluids. Optimum conditions for magma penetration are provided when these structures are placed under tension or transtension. In regions of subduction-related magmatism, porphyry copper and related deposits may be generated along these lineaments because the structures serve to focus the ascent of relatively evolved magmas and fluid distillates from deep-crustal magma reservoirs. However, lineament intersections can only focus such activity where a magma supply exists, and when lithospheric stress conditions permit. A comprehensive understanding of regional tectono-magmatic history is therefore required to interpret lineament maps in terms of their prospectivity for mineral exploration.


2021 ◽  
pp. 105072
Author(s):  
Si-Qi Liu ◽  
Yuan-Chuan Zheng ◽  
Zeng-Qian Hou ◽  
Yang Shen

2018 ◽  
Author(s):  
Kari M. Cooper ◽  
◽  
Kevin L. Schrecengost ◽  
Tyler Schlieder ◽  
Richard W. Bradshaw ◽  
...  

Geology ◽  
2020 ◽  
Vol 48 (7) ◽  
pp. 654-657 ◽  
Author(s):  
Michael C. Jollands ◽  
Elias Bloch ◽  
Othmar Müntener

Abstract Titanium-in-quartz thermometry and diffusion chronometry are routinely applied to felsic magmatic systems. These techniques can be used to determine for how long, and at what temperatures, shallow crustal magmatic systems remain partially molten, both of which are fundamental for assessing volcanic hazards. We have conducted new Ti-in-quartz diffusion experiments at 1 bar, in air, between 900 and 1490 °C, and analyzed the products by secondary ion mass spectrometry (SIMS) depth profiling. The results show that Ti diffusivity is two to three orders of magnitude lower than previously determined {log10D = –8.3 ± 0.4 m2 s–1 – [311 ± 12 kJ mol–1/(2.303RT)]}, where R is the universal gas constant (kJK–1 mol–1) and T is the temperature in Kelvin. Application of these new diffusivities brings time scales determined by Ti-in-quartz diffusion chronometry, using quartz primarily from ignimbrites, into agreement with those determined from zircon U-Pb ages from the Bishop Tuff system (California, USA). This indicates that quartz crystallized early and recorded all, or much of, the thermal history of this magmatic system. These new data also show that sharp Ti zoning profiles can be maintained in quartz within slowly cooled rocks without necessitating that the quartz crystallization temperature is significantly lower than the experimentally determined H2O-saturated granite solidus, or that such samples underwent ultrafast cooling, as has recently been proposed for the granitoids from the Tuolumne Intrusive Suite (California, USA). Finally, our data also indicate that, at least regarding the Bishop Tuff, temperatures must have remained at near-solidus conditions for the entire pre-eruptive evolution of the system, thus relaxing interpretations of “cold storage” for this magmatic system.


2015 ◽  
Vol 248 ◽  
pp. 55-62 ◽  
Author(s):  
Heinrich Brasse ◽  
Anja Schäfer ◽  
Daniel Díaz ◽  
Guillermo E. Alvarado ◽  
Angélica Muñoz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document