ti in quartz
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Katy Jane Chamberlain

<p>The Bishop Tuff is the product of one of the largest eruptions on Earth in the last 1 Myr. This thesis studies the Bishop Tuff in order to better understand the nature of the pre-eruptive magma body, with an emphasis on the processes that occurred within it and the timescales over which they operated. In situ geochemical analyses of crystals and glass from samples collected throughout the Bishop Tuff stratigraphic succession yields insights into the nature of zoning and mixing within this supervolcanic system. Timescales for zircon growth (inferred to represent longevity of the magma chamber) are investigated using U-Pb dating of zircons. Zircon textural and trace element data obtained by SIMS (SHRIMP-RG) are presented from 15 stratigraphically controlled Bishop Tuff samples and two older Glass Mountain (GM) lava samples. The resulting eruption age estimate derived from the weighted mean of 166 rim ages of 766.6±3.1 ka (95% confidence) is identical within uncertainty to published values from ID-TIMS and 40Ar/39Ar techniques. An eruption age is also derived for GM dome YA (the youngest GM dome) of 862±23 ka (95% confidence), significantly older than the widely used 790±20 ka K-Ar age. The oldest zircon cores from late-erupted Bishop material (including those with GM-type textures) have a weighted mean of 838.5±8.8 ka (95% confidence), implying that the Bishop Tuff system was only active for ~80 kyr, and had effectively no temporal overlap with the GM system. Bishop zircon textures are divided into four suites whose proportions change systematically through the eruptive sequence. Trace element variations in Bishop zircons are influenced strongly by sector zoning for many elements, and thus restrict the value of trace element variations in discerning compositional stratification within the magma chamber. In later-erupted units, bright-rim overgrowths are common, and are inferred to have crystallized from the same „bright-rim‟ magma as generated the contrasting rims seen in CL or BSE imaging on quartz, feldspar and orthopyroxene. From zircon zonation patterns, this less-evolved, slightly hotter magma invaded deeper parts of the chamber represented in the late-erupted northern units possibly up to ~10 kyr prior to eruption. In order to better quantify the timescales of interaction with the „bright-rim‟ magma, two-feldspar thermometry data are presented on multiple Bishop Tuff samples to constrain temperature variations within the pre-eruptive magma body and yield values for diffusion modelling. Two-feldspar thermometry agrees well with published Fe–Ti-oxide thermometry and reveals a ~80 °C uniform thermal gradient between the upper and lower regions of the magma chamber. Using this thermometry, diffusion of Ti in quartz, Ba in sanidine, Sr in sanidine and Fe-Mg interdiffusion in orthopyroxene are modelled to estimate timescales for the formation of overgrowth rims on crystals. Ti in quartz and Fe-Mg in orthopyroxene diffusion both yield timescales of <150 years for the formation of overgrowth rims, although differing by about an order of magnitude in their timing. However, Ba and Sr diffusion modelling in sanidine yields disparate timescales 1-2 orders of magnitude longer than for Ti in quartz. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. the profile is influenced by growth zoning). Using the comparison with Sr, constraints are placed on the initial width of the core-rim interface and the initial conditions can be refined, bringing Ba and Sr diffusion timescales into mutual alignment and closer to the values from Ti in quartz. This modelling shows that piecemeal rejuvenation of lower Bishop Tuff magma chamber occurred over a period of ~500 years leading up to eruption. In situ major and trace element analyses of sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene, zircon and matrix glass from the Bishop Tuff and two GM lavas are presented to investigate the pre-eruptive stratification of the Bishop magma chamber and its chemical relationship to the GM system. Analyses of samples from the entire Bishop stratigraphy confirm that the magma chamber was thermally and compositionally zoned prior to growth of crystals and the intrusion of the „bright-rim‟ forming magma. Study of rare mixed swirly and dacitic pumice samples shows enrichments in Ba, Sr and Ti (the elements responsible for bright-rim overgrowths in phenocryst phases) and identifies these pumices as possible representatives of the „bright-rim‟ magma. This integrated study of phenocrysts and glass from the Bishop Tuff leads to development of a revised magma chamber model, in which there is a unitary chamber with a stepped or sloping roof. The chamber has an upper, volumetrically dominant (~2/3) part showing no evidence for convection and with unzoned crystals, and a lower part which had experienced mixing of crystals and interaction with the „bright-rim‟ magma. Intrusion of the „bright-rim‟ magma introduced orthopyroxene and dominantly bright zircon crystals, and caused overgrowth of bright rims enriched in Ti, Sr and Ba on sanidine and quartz phenocrysts. Chemical compositions of GM and Bishop Tuff materials show a shared consanguinity, implying common modes of magma generation, yet the generation of GM and Bishop eruptible magma bodies were physically and temporally separate events.</p>


2021 ◽  
Author(s):  
◽  
Katy Jane Chamberlain

<p>The Bishop Tuff is the product of one of the largest eruptions on Earth in the last 1 Myr. This thesis studies the Bishop Tuff in order to better understand the nature of the pre-eruptive magma body, with an emphasis on the processes that occurred within it and the timescales over which they operated. In situ geochemical analyses of crystals and glass from samples collected throughout the Bishop Tuff stratigraphic succession yields insights into the nature of zoning and mixing within this supervolcanic system. Timescales for zircon growth (inferred to represent longevity of the magma chamber) are investigated using U-Pb dating of zircons. Zircon textural and trace element data obtained by SIMS (SHRIMP-RG) are presented from 15 stratigraphically controlled Bishop Tuff samples and two older Glass Mountain (GM) lava samples. The resulting eruption age estimate derived from the weighted mean of 166 rim ages of 766.6±3.1 ka (95% confidence) is identical within uncertainty to published values from ID-TIMS and 40Ar/39Ar techniques. An eruption age is also derived for GM dome YA (the youngest GM dome) of 862±23 ka (95% confidence), significantly older than the widely used 790±20 ka K-Ar age. The oldest zircon cores from late-erupted Bishop material (including those with GM-type textures) have a weighted mean of 838.5±8.8 ka (95% confidence), implying that the Bishop Tuff system was only active for ~80 kyr, and had effectively no temporal overlap with the GM system. Bishop zircon textures are divided into four suites whose proportions change systematically through the eruptive sequence. Trace element variations in Bishop zircons are influenced strongly by sector zoning for many elements, and thus restrict the value of trace element variations in discerning compositional stratification within the magma chamber. In later-erupted units, bright-rim overgrowths are common, and are inferred to have crystallized from the same „bright-rim‟ magma as generated the contrasting rims seen in CL or BSE imaging on quartz, feldspar and orthopyroxene. From zircon zonation patterns, this less-evolved, slightly hotter magma invaded deeper parts of the chamber represented in the late-erupted northern units possibly up to ~10 kyr prior to eruption. In order to better quantify the timescales of interaction with the „bright-rim‟ magma, two-feldspar thermometry data are presented on multiple Bishop Tuff samples to constrain temperature variations within the pre-eruptive magma body and yield values for diffusion modelling. Two-feldspar thermometry agrees well with published Fe–Ti-oxide thermometry and reveals a ~80 °C uniform thermal gradient between the upper and lower regions of the magma chamber. Using this thermometry, diffusion of Ti in quartz, Ba in sanidine, Sr in sanidine and Fe-Mg interdiffusion in orthopyroxene are modelled to estimate timescales for the formation of overgrowth rims on crystals. Ti in quartz and Fe-Mg in orthopyroxene diffusion both yield timescales of <150 years for the formation of overgrowth rims, although differing by about an order of magnitude in their timing. However, Ba and Sr diffusion modelling in sanidine yields disparate timescales 1-2 orders of magnitude longer than for Ti in quartz. The main cause for this discrepancy is inferred to be an incorrect assumption for the initial profile shape for Ba and Sr diffusion modelling (i.e. the profile is influenced by growth zoning). Using the comparison with Sr, constraints are placed on the initial width of the core-rim interface and the initial conditions can be refined, bringing Ba and Sr diffusion timescales into mutual alignment and closer to the values from Ti in quartz. This modelling shows that piecemeal rejuvenation of lower Bishop Tuff magma chamber occurred over a period of ~500 years leading up to eruption. In situ major and trace element analyses of sanidine, plagioclase, biotite, orthopyroxene, clinopyroxene, zircon and matrix glass from the Bishop Tuff and two GM lavas are presented to investigate the pre-eruptive stratification of the Bishop magma chamber and its chemical relationship to the GM system. Analyses of samples from the entire Bishop stratigraphy confirm that the magma chamber was thermally and compositionally zoned prior to growth of crystals and the intrusion of the „bright-rim‟ forming magma. Study of rare mixed swirly and dacitic pumice samples shows enrichments in Ba, Sr and Ti (the elements responsible for bright-rim overgrowths in phenocryst phases) and identifies these pumices as possible representatives of the „bright-rim‟ magma. This integrated study of phenocrysts and glass from the Bishop Tuff leads to development of a revised magma chamber model, in which there is a unitary chamber with a stepped or sloping roof. The chamber has an upper, volumetrically dominant (~2/3) part showing no evidence for convection and with unzoned crystals, and a lower part which had experienced mixing of crystals and interaction with the „bright-rim‟ magma. Intrusion of the „bright-rim‟ magma introduced orthopyroxene and dominantly bright zircon crystals, and caused overgrowth of bright rims enriched in Ti, Sr and Ba on sanidine and quartz phenocrysts. Chemical compositions of GM and Bishop Tuff materials show a shared consanguinity, implying common modes of magma generation, yet the generation of GM and Bishop eruptible magma bodies were physically and temporally separate events.</p>


2021 ◽  
Author(s):  
Michel Bestmann ◽  
Giorgio Pennacchioni ◽  
Bernhard Grasemann ◽  
Christoph Schrank

&lt;p&gt;In the last 10 years, many attempts have been mad to use the titanium-in-quartz geothermobarometer (TitaniQ) to constrain the ambient conditions during mylonitization of quartz in metamorphic rocks. However, most of the studies have shown that the TitaniQ is not readily applicable. First, the application of the TitaniQ calibrations&lt;sup&gt;1-2&lt;/sup&gt; is possible if two of the relevant variables (temperature, pressure and Ti activity) can be fixed. But the results of both calibrations can deviate by &gt;100&amp;#176;C. Secondly, several studies have shown that deformation/recrystallization processes, the availability of aqueous fluids, the amount of strain and the duration of deformation result in microstructures with a heterogeneous distribution of Ti concentrations [Ti]. Therefore, in most cases, homogenous and complete equilibration of the [Ti] at the ambient conditions of deformation does not occur. In quartz mylonites, the microstructure is commonly complex as result of strain partitioning and total accumulated strain. For such a complex rock the challenge for applying TitaniQ is to identify those domains where Ti re-equilibration to the syn-kinematic ambient conditions, did possibly occur. Identifying such domains requires the strict integration of correlated high-resolution analysis by optical microscopy, SEM-CL, EBSD and Ti-in-qtz analysis using secondary ion mass spectrometry (SIMS). This integrated information especially provides a robust interpretative tool for the interplay between grain-scale deformation, fluid-rock interaction, geochemical exchange and the evolution of the crystallographic preferred orientation during progressive strain.&lt;/p&gt;&lt;p&gt;We present the study of the deformation microstructures of quartz veins (Schober Group, Eastern Alps) as key example of such an integrated data collection to unravel characteristic deformation processes responsible for the partial or complete resetting of the Ti-in-quartz system under retrograde conditions. The Schober quartz veins developed at amphibolite facies conditions (510-590 &amp;#176;C, 0.5-0.6 GPa) and were overprinted by deformation at lower greenschist facies. Subgrain rotation (SGR) recrystallization was the dominant recrystallization mechanism during mylonitization. During deformation complete resetting of the initial [Ti] of 3-4 ppm down to 0.2-0.6 ppm occurred in domains (e.g. pressure shadows) where sufficient fluids were available and could percolate through the microstructures. High strain and pervasive quartz dynamic recrystallization did not necessarily result in homogeneous and complete re-equilibration of the [Ti]. Our study reveals that subgrain boundaries were locally pathways for partial [Ti] reset.&lt;/p&gt;&lt;p&gt;Using the example of mylonitized quartz veins from the Schober Group in the Austroalpine domain of the Eastern Alps, we aim at showing that the initial Ti-in-qtz and corresponding CL signature of the quartz vein is reset to different degrees even at high strains and pervasive dynamic recrystallization, depending on the availability of fluids and its repartitioning.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;(1) Huang, R., Aud&amp;#233;tat, A., 2012. The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim. Cosmochim. Acta 84, 75&amp;#8211;89.&lt;/p&gt;&lt;p&gt;(2) Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., Lanzirozzi, A., 2010. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib. Mineral. Petrol. 160, 743&amp;#8211;759.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 192 ◽  
pp. 2
Author(s):  
Gaëtan Launay ◽  
Stanislas Sizaret ◽  
Philippe Lach ◽  
Jérémie Melleton ◽  
Éric Gloaguen ◽  
...  

The W-Sn Panasqueira ore deposit is a magmatic-hydrothermal system, which includes a high grade quartz-vein type mineralization and underneath disseminated greisen-type mineralization located in the upper part of a two-mica granite. We investigate genetic and chronological relationships between greisenization of the Panasqueira granite and the formation of ore-bearing quartz veins by monitoring major and trace elements variations in quartz-muscovite assemblages composing the two-mica granite, greisen and ore-bearing quartz veins. Greisen is marked by an overall depletion in Mg, Ti, Ca, Na, Ba, Sr, REE and enrichment in Fe, Li, Rb, Cs, Sn, W that reflect the breakdown of feldspars and biotite and implication of W-Sn-bearing fluids during greisenization. Muscovite from greisen and mineralized quartz veins are enriched in granophile elements (F, Rb, Cs, Li, Sn, W and Zn) compared to magmatic muscovite from the two-mica granite. Trace elements contents in quartz depict evolutionary trends with progressive enrichment in Ge and B and depletion in Al, Ti and Li between magmatic and hydrothermal quartz that emphasize the progressive evolution and cooling of the magmatic-hydrothermal system of Panasqueira. Multivariate statistical approach applied on quartz and muscovite data demonstrates similarities in composition between quartz and muscovite from greisen with those composing ore-bearing quartz veins. These similarities suggest that greisenization and the formation of mineralized veins result from the same hydrothermal event and derived from the same source of hydrothermal fluids. Apatite from greisen and quartz vein yielded respectively U-Pb ages of 292 ± 10 Ma and 295 ± 5 Ma confirming that greisenization and the formation of mineralized veins occurred roughly at the same time. These ages also overlap with the cooling age of the Panasqueira granite (296 ± 4 Ma), indicating a temporal and genetic link between greisenization, W-Sn mineralization and the granite crystallization. Temperatures of the magmatic-hydrothermal system constrained by Ti-in quartz thermometry depicts a cooling trend from magmatic quartz of granite (700–600 °C) to hydrothermal quartz of greisen (500–400 °C) and veins (450–350 °C). These results provide evidences that greisenization and the formation of W-Sn bearing quartz veins occurred at the magmatic-hydrothermal transition, during which orthomagmatic fluids rich in volatils, incompatible elements and metals (W and Sn) were exsolved at the final stage of solidification of the Panasqueira two-mica granite.


Geology ◽  
2020 ◽  
Vol 48 (12) ◽  
pp. e514-e514
Author(s):  
Michael C. Jollands ◽  
Elias Bloch ◽  
Othmar Müntener

2020 ◽  
Vol 281 ◽  
pp. 149-167 ◽  
Author(s):  
Marisa D. Acosta ◽  
James M. Watkins ◽  
Mark H. Reed ◽  
John J. Donovan ◽  
Donald J. DePaolo

Sign in / Sign up

Export Citation Format

Share Document