scholarly journals Supplemental Material: Rapid cooling of the Rustenburg Layered Suite of the Bushveld Complex (South Africa): Insights from biotite 40Ar/39Ar geochronology

2020 ◽  
Author(s):  
Jacob Setera

Methods, Figures S1–S5, and Tables S1–S4.<br>

Geology ◽  
2020 ◽  
Vol 48 (8) ◽  
pp. 834-838
Author(s):  
Jacob B. Setera ◽  
Jill A. VanTongeren ◽  
Brent D. Turrin ◽  
Carl C. Swisher

Abstract Despite their importance to understanding magma chamber processes and the formation of economically viable precious metal deposits, the cooling histories of layered mafic intrusions remain enigmatic due to limited geochronologic constraints. We provide a comprehensive 40Ar/39Ar study of biotite throughout the Rustenburg Layered Suite (RLS) of the Bushveld Complex, South Africa. Analyses of individual biotite grains from 10 samples, encompassing ∼5.5 km of RLS stratigraphy, yielded weighted mean plateau ages that all overlap at 2σ (α-95% confidence level) and range from 2056.3 ± 3.2 Ma to 2052.0 ± 7.6 Ma (2σ). A weighted mean of all biotite plateau ages yielded an age of 2054.47 ± 0.84 Ma (2σ, n = 30, mean square of weighted deviates = 0.23, P = 1.00; ±21 Ma fully propagated). The overlap between our 40Ar/39Ar biotite and published U-Pb zircon ages suggests that the RLS cooled rapidly to the closure temperature of biotite, with cooling rates on the order of 1000 °C m.y.–1 throughout the stratigraphy. Thermal modeling requires enhanced heat loss, due to the hydrothermal system associated with the emplacement of the RLS, to produce the inferred rapid cooling rates. Previously reported young 40Ar/39Ar biotite ages from the UG-2 and MG-1 chromitite seams and the Merensky Reef are likely a product of localized late-stage circulation of hydrothermal fluids. The lack of similarly young 40Ar/39Ar biotite ages from the remainder of the stratigraphy suggests that late-stage hydrothermal events were potentially localized to chromitites and the Merensky Reef.


2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2019 ◽  
Vol 114 (3) ◽  
pp. 569-590 ◽  
Author(s):  
Felix E.D. Kaufmann ◽  
Marie C. Hoffmann ◽  
Kai Bachmann ◽  
Ilya V. Veksler ◽  
Robert B. Trumbull ◽  
...  

2004 ◽  
Vol 42 (2) ◽  
pp. 563-582 ◽  
Author(s):  
T. Oberthur ◽  
F. Melcher ◽  
L. Gast ◽  
C. Wohrl ◽  
J. Lodziak

2015 ◽  
Vol 56 (6) ◽  
pp. 1229-1250 ◽  
Author(s):  
Ilya V. Veksler ◽  
David L. Reid ◽  
Peter Dulski ◽  
Jakob K. Keiding ◽  
Mathias Schannor ◽  
...  

2020 ◽  
Vol 62 (8) ◽  
pp. 796-802
Author(s):  
N. S. Rudashevsky ◽  
V. N. Rudashevsky

1999 ◽  
Vol 63 (6) ◽  
pp. 911-923 ◽  
Author(s):  
Tom E. McCandless ◽  
Joaquin Ruiz ◽  
B.Ivan Adair ◽  
Claire Freydier

Sign in / Sign up

Export Citation Format

Share Document