scholarly journals Evolution of the early Mesozoic Cordilleran arc: The detrital zircon record of back-arc basin deposits, Triassic Buckskin Formation, western Arizona and southeastern California, USA

Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 1042-1057
Author(s):  
N.R. Riggs ◽  
T.B. Sanchez ◽  
S.J. Reynolds

Abstract A shift in the depositional systems and tectonic regime along the western margin of Laurentia marked the end of the Paleozoic Era. The record of this transition and the inception and tectonic development of the Permo-Triassic Cordilleran magmatic arc is preserved in plutonic rocks in southwestern North America, in successions in the distal back-arc region on the Colorado Plateau, and in the more proximal back-arc region in the rocks of the Buckskin Formation of southeastern California and west-central Arizona (southwestern North America). The Buckskin Formation is correlated to the Lower–Middle Triassic Moenkopi and Upper Triassic Chinle Formations of the Colorado Plateau based on stratigraphic facies and position and new detrital zircon data. Calcareous, fine- to medium-grained and locally gypsiferous quartzites (quartz siltstone) of the lower and quartzite members of the Buckskin Formation were deposited in a marginal-marine environment between ca. 250 and 245 Ma, based on detrital zircon U-Pb data analysis, matching a detrital-zircon maximum depositional age of 250 Ma from the Holbrook Member of the Moenkopi Formation. An unconformity that separates the quartzite and phyllite members is inferred to be the Tr-3 unconformity that is documented across the Colorado Plateau, and marks a transition in depositional environments. Rocks of the phyllite and upper members were deposited in wholly continental depositional environments beginning at ca. 220 Ma. Lenticular bodies of pebble to cobble (meta) conglomerate and medium- to coarse-grained phyllite (subfeldspathic or quartz wacke) in the phyllite member indicate deposition in fluvial systems, whereas the fine- to medium-grained beds of quartzite (quartz arenite) in the upper member indicate deposition in fluvial and shallow-lacustrine environments. The lower and phyllite members show very strong age and Th/U overlap with grains derived from Cordilleran arc plutons. A normalized-distribution plot of Triassic ages across southwestern North America shows peak magmatism at ca. 260–250 Ma and 230–210 Ma, with relatively less activity at ca. 240 Ma, when a land bridge between the arc and the continent was established. Ages and facies of the Buckskin Formation provide insight into the tectono-magmatic evolution of early Mesozoic southwestern North America. During deposition of the lower and quartzite members, the Cordilleran arc was offshore and likely dominantly marine. Sedimentation patterns were most strongly influenced by the Sonoma orogeny in northern Nevada and Utah (USA). The Tr-3 unconformity corresponds to both a lull in magmatism and the “shoaling” of the arc. The phyllite and upper members were deposited in a sedimentary system that was still influenced by a strong contribution of detritus from headwaters far to the southeast, but more locally by a developing arc that had a far stronger effect on sedimentation than the initial phases of magmatism during deposition of the basal members.

Geology ◽  
2020 ◽  
Author(s):  
Emily S. Finzel ◽  
Justin A. Rosenblume

Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates.


2014 ◽  
Vol 50 ◽  
pp. 66 ◽  
Author(s):  
James Gregory McHone ◽  
Arthur M. Hussey ◽  
David P. West ◽  
David G. Bailey

<p> </p><p style="margin: 1em 0px; line-height: 200%; text-indent: 0.5in;"><span style="line-height: 200%; font-family: 'Minion Pro','serif'; font-size: 12pt;">A large Early Mesozoic quartz tholeiite dyke has been mapped discontinuously for 190 km in southern coastal Maine, USA. Including its type locality at Christmas Cove (South Bristol, Maine, USA), the dyke has features of a generally ENE strike; dip usually steep to the SSE but abruptly turning very shallow in short sections; and widths of 9 to 35 m. </span><span style="line-height: 200%; font-family: 'Minion Pro','serif'; font-size: 12pt; mso-ansi-language: EN-US;" lang="EN-US">The dyke rock has a distinctive cross-columnar field appearance, and a subophitic to micro-porphyritic</span><span style="line-height: 200%; font-family: 'Minion Pro','serif'; font-size: 12pt;"> texture with abundant Ti-bearing augite, calcic plagioclase, scattered euhedral orthopyroxene phenocrysts, and coarse-grained glomerophyric clumps of augite with plagioclase. Several <sup>40</sup>Ar/<sup>39</sup>Ar whole-rock dates for this and associated regional dykes are close to 201 Ma, in agreement with ages of other Early Mesozoic dykes and basalts of the Central Atlantic Magmatic Province (CAMP). The geographic position, age, whole-rock chemistry, and petrography indicate that the Christmas Cove Dyke is co-magmatic or contiguous with the Higganum-Holden Dyke of southern New England, which was a source for the Talcott Basalt of the Early Mesozoic Hartford rift basin. The dyke system is a 700-km long fissure source for the earliest rift basin basalts preserved in northeastern North America, and it virtually connects the Hartford Basin and the Fundy Basin in Atlantic Canada. The Caraquet Dyke of New Brunswick and central Maine may be co-magmatic with the Buttress Dyke and Holyoke Basalt of southern New England, but lava from it is not preserved in Atlantic Canada or Maine.</span></p><p> </p>


2019 ◽  
Author(s):  
Sarah N. Dendy ◽  
◽  
William R. Guenthner ◽  
David A. Grimley ◽  
Jessica L. Conroy ◽  
...  

2019 ◽  
Author(s):  
Carmen Winn ◽  
◽  
Karl E. Karlstrom ◽  
Shari A. Kelley ◽  
Matthew T. Heizler ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 25-43
Author(s):  
Yuan Peng ◽  
Yongsheng Zhang ◽  
Eenyuan Xing ◽  
Linlin Wang

AbstractThe Zhongwunongshan Structural Belt (ZWSB) locates between the Olongbruk Microblock of North Qaidam and the South Qilian Block in China, and it has important implication for understanding the tectonic significance of North Qaidam. Nowadays, there are few discussion on the Caledonian tectonothermal events of the Zhongwunongshan Structural Belt, and there exist different opinions on provenance and tectonic environment of the Zhongwunongshan Group in the ZWSB and its adjacent North Qaidam. In this study, a comprehensive analysis of the detrital zircon geochronological research was carried out on the Zhongwunongshan Group. The detrital zircon U-Pb dating results showed two major populations. The first was Neoproterozoic (966-725 Ma) with a ∈Hf(t) = −15.9 to 9.5, and the other was late Early Paleozoic (460-434Ma) with a ∈Hf(t) = −9.6 to −3.1. In combination with previous research, the dominated provenances were found to be the Neoproterozoic granitic gneiss of the Yuqia-Shaliuhe HP-UHP metamorphic belt and the late Early Paleozoic granite of the Tanjianshan ophiolite-volcanic arc belt in North Qaidam. The Zhongwunongshan Group was deposited in the back-arc sedimentary basin related to the Caledonian collisional orogeny during Middle Silurian-Early Devonian (434-407.9 Ma).


1995 ◽  
Vol 7 (1) ◽  
pp. 99-113 ◽  
Author(s):  
J.L. Smellie ◽  
M. Liesa ◽  
J.A. Muñoz ◽  
F. Sàbat ◽  
R. Pallàs ◽  
...  

Livingston Island contains several, distinctive sedimentary and volcanic sequences, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The turbiditic, late Palaeozoic–early Mesozoic Miers Bluff Formation (MBF) is divided into the Johnsons Dock and Napier Peak members, which may represent sedimentation in upper and lower mid-fan settings, respectively, prior to pre-late Jurassic polyphase deformation (dominated by open folding). The Moores Peak breccias are formed largely of coarse clasts reworked from the MBF. The breccias may be part of the MBF, a separate unit, or part of the Mount Bowles Formation. The structural position is similar to the terrigenous Lower Jurassic Botany Bay Group in the northern Antarctic Peninsula, but the precise stratigraphical relationships and age are unknown. The (?) Cretaceous Mount Bowles Formation is largely volcanic. Detritus in the volcaniclastic rocks was formed mainly during phreatomagmatic eruptions and redeposited by debris flows (lahars), whereas rare sandstone interbeds are arkosic and reflect a local provenance rooted in the MBF. The Pleistocene–Recent Inott Point Formation is dominated by multiple, basaltic tuff cone relicts in which distinctive vent and flank sequences are recognized. The geographical distribution of the Edinburgh Hill Formation is closely associated with faults, which may have been reactivated as dip-slip structures during Late Cenozoic extension (arc splitting).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousif M. Makeen ◽  
Xuanlong Shan ◽  
Habeeb A. Ayinla ◽  
Ekundayo Joseph Adepehin ◽  
Ndip Edwin Ayuk ◽  
...  

AbstractThe Zarga and Ghazal formations constitute important reservoirs across the Muglad Basin, Sudan. Nevertheless, the sedimentology and diagenesis of these reservoir intervals have hitherto received insignificant research attention. Detailed understanding of sedimentary facies and diagenesis could enhance geological and geophysical data for better exploration and production and minimize risks. In this study, subsurface reservoir cores representing the Zarga formation (1114.70–1118.50 m and 1118.50–1125.30 m), and the Ghazal formation (91,403.30–1406.83 m) were subjected to sedimentological (lithofacies and grain size), petrographic/mineralogic (thin section, XRD, SEM), and petrophysical (porosity and permeability) analyses to describe their reservoir quality, provenance, and depositional environments. Eight (8) different lithofacies, texturally characterized as moderately to well-sorted, and medium to coarse-grained, sub-feldspathic to feldspathic arenite were distinguished in the cored intervals. Mono-crystalline quartz (19.3–26.2%) predominated over polycrystalline quartz (2.6–13.8%), feldspar (6.6–10.3%), and mica (1.4–7.6%) being the most prominent constituent of the reservoir rocks. Provenance plot indicated the sediments were from a transitional continental provenance setting. The overall vertical sequence, composition, and internal sedimentary structures of the lithofacies suggest a fluvial-to-deltaic depositional environment for the Ghazal formation, while the Zarga formation indicated a dominant deltaic setting. Kaolinite occurs mainly as authigenic mineral, while carbonates quantitatively fluctuate with an insignificant amount of quartz overgrowths in most of the analyzed cores. Integration of XRD, SEM, and thin section analysis highlights that kaolinite, chlorite, illite, and smectite are present as authigenic minerals. Pore-destroying diagenetic processes (e.g. precipitation, cementation, and compaction etc.) generally prevailed over pore-enhancing processes (e.g. dissolution). Point-counted datasets indicate a better reservoir quality for the Ghazal formation (ɸ = 27.7% to 30.7%; K = 9.65 mD to 1196.71 mD) than the Zarga formation (17.9% to 24.5%; K = 1051.09 mD to 1090.45 mD).


Sign in / Sign up

Export Citation Format

Share Document