scholarly journals Supplemental Material: Cyclostratigraphic calibration of the Eifelian Stage (Middle Devonian, Appalachian Basin, Western New York, USA)

Author(s):  
Damien Pas

ICP-OES dataset, Matlad and R scripts.

2020 ◽  
Vol 133 (1-2) ◽  
pp. 277-286 ◽  
Author(s):  
Damien Pas ◽  
Anne-Christine Da Silva ◽  
D. Jeffrey Over ◽  
Carlton E. Brett ◽  
Lauren Brandt ◽  
...  

Abstract Over the past decade the integration of astrochronology and U/Pb thermal ionization mass spectrometry dating has resulted in major improvements in the Devonian time scale, which allowed for accurate determination of ages and rates of change in this critical interval of Earth history. However, widely different durations have been published for the Middle Devonian Eifelian stage. Here we aim to solve this discrepancy by building an astronomically calibrated time scale using a high-resolution geochemical data set collected in the early to late Eifelian outer-ramp and deep-shelf deposits of the Seneca section (Appalachian Basin, Western New York, USA). The Middle Devonian Eifelian Stage (GTS2012; base at 393.3 ± 1.2 m.y. and duration estimate of 5.6 ± 1.9 m.y.), is bracketed by two major bioevents, respectively the Choteč event at its base and the Kačák event just prior to the Eifelian–Givetian boundary. To capture the record of Milankovitch-scale climatic cycles and to develop a model of the climatic and oceanographic variations that affected the Appalachian Basin during the Eifelian, 750 samples were collected at typically 2.5 cm intervals across the Seneca section. Major and trace elements were measured on each sample with an inductively coupled plasma–optical emission spectrometer. To estimate the duration of the Seneca section sampled, we applied multiple spectral techniques such as harmonic analysis, the multi-taper, and evolutionary spectral analysis, and we tuned the Log10Ti series using the short orbital eccentricity ∼100 k.y. cycle. Then, to assess the reliability of our cyclostratigraphic interpretation we ran the Average Spectral Misfit method on selected proxies for detrital input variation. The estimated duration derived using this method falls in the range of durations estimated with the tuning method. Using the approximate position of the Emsian–Eifelian and Eifelian–Givetian boundaries, constrained within <1 m, the proposed estimation of the total duration of the Eifelian age is ∼5 m.y. Interpolated from the high-resolution U-Pb radiometric age available for the Tioga F Bentonite, the numerical ages of the Emsian–Eifelian and the Eifelian–Givetian were respectively recalibrated at 393.39 Ma and 388.24 Ma. The uncertainty from the radiometric date is respectively ± 0.86 Ma and ± 0.86 Ma.


2007 ◽  
Vol 81 (6) ◽  
pp. 1510-1515 ◽  
Author(s):  
David M. Work ◽  
Charles E. Mason ◽  
Gilbert Klapper

Pharciceras Hyatt, 1884 is the diagnostic ammonoid of the late middle Givetian Stage of the Middle Devonian Series. It occurs in the Rhenish Massif in Germany, the Montagne Noire in southern France, and in equivalent strata in the Anti-Atlas in southern Morocco. Verified North American occurrences of Pharciceras are confined to the New York succession, where the appearance of the ancestral species P. amplexum (Hall, 1886) in the Upper Tully Limestone represents an important and well-established biostratigraphic datum within the Taghanic onlap interval (see Aboussalam and Becker, 2001 for discussion). In this note we describe a second, distinctly younger, North American species, Pharciceras barnetti n. sp., from the New Albany Shale in eastcentral Kentucky that provides new evidence on the Taghanic onlap interval (Upper Tully/Geneseo Sequence of Baird and Brett, 2003) in the central Appalachian Basin. This occurrence is particularly significant because of its association with conodonts that provide a basis for refined correlations between the central Appalachian Basin and the Taghanic onlap succession in New York.


Author(s):  
Robert T. Ryder ◽  
Christopher S. Swezey ◽  
Michael H. Trippi ◽  
Erika E. Lentz ◽  
K. Lee Avary ◽  
...  

2019 ◽  
Vol 56 (4) ◽  
pp. 365-396
Author(s):  
Debra Higley ◽  
Catherine Enomoto

Nine 1D burial history models were built across the Appalachian basin to reconstruct the burial, erosional, and thermal maturation histories of contained petroleum source rocks. Models were calibrated to measured downhole temperatures, and to vitrinite reflectance (% Ro) data for Devonian through Pennsylvanian source rocks. The highest levels of thermal maturity in petroleum source rocks are within and proximal to the Rome trough in the deep basin, which are also within the confluence of increased structural complexity and associated faulting, overpressured Devonian shales, and thick intervals of salt in the underlying Silurian Salina Group. Models incorporate minor erosion from 260 to 140 million years ago (Ma) that allows for extended burial and heating of underlying strata. Two modeled times of increased erosion, from 140 to 90 Ma and 23 to 5.3 Ma, are followed by lesser erosion from 5.3 Ma to Present. Absent strata are mainly Permian shales and sandstone; thickness of these removed layers increased from about 6200 ft (1890 m) west of the Rome trough to as much as 9650 ft (2940 m) within the trough. The onset of oil generation based on 0.6% Ro ranges from 387 to 306 Ma for the Utica Shale, and 359 to 282 Ma for Middle Devonian to basal Mississippian shales. The ~1.2% Ro onset of wet gas generation ranges from 360 to 281 Ma in the Utica Shale, and 298 to 150 Ma for Devonian to lowermost Mississippian shales.


Sign in / Sign up

Export Citation Format

Share Document