scholarly journals Supplemental Material: Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141–135 Ma ocean island within the Bangong–Nujiang Suture Zone, Tibetan Plateau

Author(s):  
Jian-Jun Fan ◽  
et al.

Analytical methods and data for the Zhonggang igneous–sedimentary rocks.

Author(s):  
Jian-Jun Fan ◽  
Yaoling Niu ◽  
Yi-Ming Liu ◽  
Yu-Jie Hao

Knowledge of the timing of the closure of the Meso-Tethys Ocean as represented by the Bangong−Nujiang Suture Zone, i.e., the timing of the Lhasa-Qiangtang collision, is critical for understanding the Mesozoic tectonics of the Tibetan Plateau. But this timing is hotly debated; existing suggestions vary from the Middle Jurassic (ca. 166 Ma) to Late Cretaceous (ca. 100 Ma). In this study, we describe the petrology of the Zhonggang igneous−sedimentary rocks in the middle segment of the Bangong−Nujiang Suture Zone and present results of zircon U−Pb geochronology, whole-rock geochemistry, and Sr−Nd isotope analysis of the Zhonggang igneous rocks. The Zhonggang igneous−sedimentary rocks have a thick basaltic basement (> 2 km thick) covered by limestone with interbedded basalt and tuff, trachyandesite, chert, and poorly sorted conglomerate comprising limestone and basalt debris. There is an absence of terrigenous detritus (e.g., quartz) within the sedimentary and pyroclastic rocks. These observations, together with the typical exotic blocks-in-matrix structure between the Zhonggang igneous−sedimentary rocks and the surrounding flysch deposits, lead to the conclusion that the Zhonggang igneous−sedimentary rocks are remnants of an ocean island within the Meso-Tethys Ocean. This conclusion is consistent with the ocean island basalt-type geochemistry of the Zhonggang basalts and trachyandesites, which are enriched in light rare earth elements (LaN/YbN = 4.72−18.1 and 5.61−13.7, respectively) and have positive Nb−Ta anomalies (NbPM/ThPM > 1, TaPM/UPM > 1), low initial 87Sr/86Sr ratios (0.703992−0.705428), and positive mantle εNd(t) values (3.88−5.99). Zircon U−Pb dates indicate that the Zhonggang ocean island formed at 141−135 Ma; therefore, closure of the Meso-Tethys Ocean and collision of the Lhasa and Qiangtang terranes must have happened after ca. 135 Ma.


2020 ◽  
Author(s):  
Peng Wang ◽  
Guochun Zhao ◽  
et al.

Table S1: Zircon U-Pb ages of igneous rocks in the Western Kunlun orogenic belt; Table S2: Results of whole-rock major- (wt%) and trace-element (ppm) data from the three intrusions; Table S3: Zircon U-Pb age of the three intrusions; Table S4: Zircon Hf isotope compositions of the three intrusions; Table S5: Whole-rock Sr-Nd-Pb isotope compositions of the three intrusions; Table S6: Representative analyses of feldspar, amphibole, and pyroxene from the Aqiang and Yutian intrusions; Table S7: Bulk partition coefficients used for trace-element modeling in Figure 14; Figure S1: CL images of zircons showing internal textures and ages of 206Pb/238U (Ma).


2020 ◽  
Vol 132 (9-10) ◽  
pp. 2202-2220 ◽  
Author(s):  
Yue Tang ◽  
Qing-Guo Zhai ◽  
Sun-Lin Chung ◽  
Pei-Yuan Hu ◽  
Jun Wang ◽  
...  

Abstract The Meso-Tethys was a late Paleozoic to Mesozoic ocean basin between the Cimmerian continent and Gondwana. Part of its relicts is exposed in the Bangong–Nujiang suture zone, in the north-central Tibetan Plateau, that played a key role in the evolution of the Tibetan plateau before the India-Asia collision. A Penrose-type ophiolitic sequence was newly discovered in the Ren Co area in the middle of the Bangong–Nujiang suture zone, which comprises serpentinized peridotites, layered and isotropic gabbros, sheeted dikes, pillow and massive basalts, and red cherts. Zircon U-Pb dating of gabbros and plagiogranites yielded 206Pb/238U ages of 169–147 Ma, constraining the timing of formation of the Ren Co ophiolite. The mafic rocks (i.e., basalt, diabase, and gabbro) in the ophiolite have uniform geochemical compositions, coupled with normal mid-ocean ridge basalt-type trace element patterns. Moreover, the samples have positive whole-rock εNd(t) [+9.2 to +8.3], zircon εHf(t) [+17 to +13], and mantle-like δ18O (5.8–4.3‰) values. These features suggest that the Ren Co ophiolite is typical of mid-ocean ridge-type ophiolite that is identified for the first time in the Bangong–Nujiang suture zone. We argue that the Ren Co ophiolite is the relic of a fast-spreading ridge that occurred in the main oceanic basin of the Bangong–Nujiang segment of Meso-Tethys. Here the Meso-Tethyan orogeny involves a continuous history of oceanic subduction, accretion, and continental assembly from the Early Jurassic to Early Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document