qiangtang terrane
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
pp. 1-16
Author(s):  
Ming Zheng ◽  
Yang Song ◽  
Haifeng Li ◽  
Carl Guilmette ◽  
Juxing Tang ◽  
...  

Abstract The Bangong–Nujiang suture zone (BNSZ), which separates the Gondwana-derived Qiangtang and Lhasa terranes, preserves limited geological records of the Bangong–Nujiang Ocean (BNO). The timing of opening of this ocean has been hotly debated due to the rare and complicated rock records in the suture zones, which span over 100 Ma from Carboniferous–Permian to Early Jurassic time, based on geological, palaeontological and palaeomagnetic data. A combination of geochemical, geochronological and isotopic data are reported for the Riasairi trachytes, central BNSZ, northern Tibet, to constrain its petrogenesis and tectonic settings. Zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields mean ages of 236 Ma. Geochemically, these rocks are high-K calc-alkaline with moderate SiO2 (59.1–67.5 wt%) and high K2O + Na2O (8.1–11.6 wt%) contents. They are enriched in light rare earth elements with negative Eu anomalies, and show enrichments in high-field-strength elements with positive ‘Nb, Ta’ anomalies, similar to the intra-continental rift setting-related felsic lavas from the African Rift System. The high positive zircon ϵHf(t) and bulk ϵNd(t) values, as well as high initial Pb isotopes, imply a heterogeneous source involving both asthenospheric and subcontinental lithospheric mantle. The field and geochemical data jointly suggest that the Riasairi trachytes within the Mugagangri Group were formed in a continental rift setting. We interpret that the continental-rift-related Riaisairi trachytic lavas as derived from the southern margin of the Qiangtang terrane, implying that the BNO would have opened by Middle Triassic time, well after the commonly interpreted break-up of the Qiangtang terrane from Gondwana.


2021 ◽  
Author(s):  
Jianbo Cheng ◽  
Yalin Li ◽  
Haiyang He ◽  
Siqi Xiao ◽  
Wenjun Bi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guichun Wu ◽  
Zhansheng Ji ◽  
Gary G. Lash ◽  
Jianxin Yao

AbstractThe Bangong-Nujiang Suture Zone (BNSZ) of Tibet (Xizang) has been interpreted to represent a relic of the Bangong-Nujiang Ocean. However, the existence of this ocean during Triassic time remains a point of contention. A sedimentary succession spanning the Upper Permian through Triassic described from the central BNSZ suggests that the Lhasa and South Qiangtang terranes were contiguous thus negating the existence of a terrane-separating ocean during Triassic time. However, the apparent lack of Triassic deposits in the west BNSZ has called into question the existence of Triassic deposits in the central region of the BNSZ. Our biostratigraphic work in the Wuga Formation of the Gaize area has yielded abundant Norian conodonts thus confirming the existence of Upper Triassic deposits in the west BNSZ. The clastic deposits of the Wuga Formation are herein interpreted to be of Rhaetian age. Moreover, intercalated limestone and chert are termed the Dongnale Formation of Norian age. The Norian to Rhaetian succession can be correlated with strata of the central BNSZ as well as with deposits of the Lhasa Terrane and the South Qiangtang Terrane. Similar stratigraphies among these regions through the Late Triassic suggests a shared depositional setting and that the BNSZ was not an ocean in Norian and Rhaetian time.


Author(s):  
Yun-Chuan Zeng ◽  
Ji-Feng Xu ◽  
Ming-Jian Li ◽  
Jian-Lin Chen ◽  
Bao-Di Wang ◽  
...  

Abstract Orthopyroxene-bearing granitic rock (e.g., charnockite) is relatively rare but provides an excellent opportunity to probe the thermal and tectonic evolution of deep orogenic crust because of its distinct mineral assemblage. Here we present petrological, mineralogical, elemental, and Sr–Nd–Hf–O isotopic data for late Eocene (ca. 36 Ma; zircon U–Pb ages) volcanic rocks exposed in the Ejiu region in the southern Qiangtang Terrane to investigate how the central Tibetan crust evolved to its modern thickness and thermal state. The Ejiu volcanic rocks (EVRs) are trachydacites with anhydrous mineral assemblages (i.e., two pyroxenes, sanidine, plagioclase, and ilmenite, without amphibole and biotite) and geochemical characteristics (e.g., high P2O5 and TiO2) that resemble those of charnockite-type magmatic rocks. Mineral and whole-rock thermometry and hygrometry suggests that the parent magma crystallized under hot (~1000 °C) and dry (H2O < 2 wt.%) condition. Besides, the EVRs display adakitic affinities according to their high SiO2 and Al2O3 contents, high Sr/Y, La/Yb, and Gd/Yb ratios, and low Y and Yb contents, without marked negative Eu anomalies. The calculated melts in equilibrium with pyroxenes also display adakitic compositions (e.g., high Sr/Y and La/Yb ratios), indicating that the adakitic compositions of the EVRs did not result from late-stage magmatic evolution. In addition, the melts of the EVRs were saturated in TiO2, as inferred from the high TiO2 contents of these rocks and the presence of ilmenite. An integrated analysis of the geochemical, petrological, and mineralogical data suggests that the EVRs were neither evolutional products nor partial melts of hydrous mafic materials at normal crustal pressures, but were formed by fusion of an eclogitized mafic protolith with residue containing garnet and rutile but lacking amphibole and plagioclase. The whole-rock Sr–Nd and zircon Hf isotope compositions of the EVRs [(87Sr/86Sr)i = 0.7053 to 0.7066; εNd(t) = −1.40 to −0.99; zircon εHf(t) = +1.08 to +5.31] indicate that the parental protolith was relatively juvenile in nature, but also contained some supracrustal materials given the high zircon δ18O values [zircon δ18O = +8.21‰ to +11.00‰]. The above arguments lead us to propose that of partial melting of a previously dehydrated—but chemically undepleted—mafic lower continental crust at high pressure (>1.5 GPa) and high temperature (>1000 °C) generated the EVRs. Based on a synthesis of independent geological and geophysical data, we further suggest that the southern Qiangtang Terrane crust of the central Tibetan Plateau was thick, dry, and elevated during the Late Cretaceous to early Eocene time, and that it became abnormally hot owing to the ascending asthenosphere after lithospheric foundering during the middle Eocene.


Author(s):  
Yue Qi ◽  
Qiang Wang ◽  
Gang-jian Wei ◽  
Xiu-Zheng Zhang ◽  
Wei Dan ◽  
...  

Diverse rock types and contrasting geochemical compositions of post-collisional mafic rocks across the Tibetan Plateau indicate that the underlying enriched lithospheric mantle is heterogeneous; however, how these enriched mantle sources were formed is still debated. The accreted terranes within the Tibetan Plateau experienced multiple stages of evolution. To track the geochemical characteristics of their associated lithospheric mantle through time, we can use mantle-derived magmas to constrain the mechanism of mantle enrichment. We report zircon U-Pb ages, major and trace element contents, and Sr-Nd isotopic compositions for Early Cretaceous and late Eocene mafic rocks in the southern Qiangtang terrane. The Early Cretaceous Baishagang basalts (107.3 Ma) are characterized by low K2O/Na2O (<1.0) ratios, arc-like trace element patterns, and uniform Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7067−0.7073, εNd(t) = −0.4 to −0.2]. We suggest that the Baishagang basalts were derived from partial melting of enriched lithospheric mantle that was metasomatized by subducted Bangong−Nujiang oceanic material. We establish the geochemistry of the pre-collisional enriched lithospheric mantle under the southern Qiangtang terrane by combining our data with those from other Early Cretaceous mafic rocks in the region. The late Eocene (ca. 35 Ma) post-collisional rocks in the southern Qiangtang terrane have low K2O/Na2O (<1.0) ratios, and their major element, trace element, and Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7042−0.7072, εNd(t) = −4.5 to +1.5] are similar to those of the Early Cretaceous mafic rocks. Based on the distribution, melting depths, and whole-rock geochemical compositions of the Early Cretaceous and late Eocene mafic rocks, we argue that the primitive late Eocene post-collisional rocks were derived from pre-collisional enriched lithospheric mantle, and the evolved samples were produced by assimilation and fractional crystallization of primary basaltic magma. Asthenosphere upwelling in response to the removal of lithospheric mantle induced the partial melting of enriched lithospheric mantle at ca. 35 Ma.


Geology ◽  
2021 ◽  
Author(s):  
Zong-Yong Yang ◽  
Qiang Wang ◽  
Lu-Lu Hao ◽  
Derek A. Wyman ◽  
Lin Ma ◽  
...  

Subduction erosion is important for crustal material recycling and is widespread in modern active convergent margins. However, such a process is rarely identified in fossil convergent systems, which casts doubt on the importance of subduction erosion through the geological record. We report on ca. 155 Ma Kangqiong (pluton) intrusive rocks of a Mesozoic magmatic arc in the southern Qiangtang terrane, central Tibet. These rocks mainly consist of trondhjemites and tonalites and are similar to slab-derived adakites with mantle-like zircon oxygen isotope compositions (δ18O = 5.2‰–5.6‰), they display more evolved Sr-Nd isotopes and higher Th/La relative to mid-oceanic ridge basalts from the Bangong-Nujiang suture, and they contain abundant amphibole and biotite. These characteristics indicate magma generation via H2O-fluxed melting of eroded forearc crust debris with subducted oceanic crust at 1.5–2.5 GPa and 700–800 °C. In addition, the intrusions are exposed <20 km north of the Bangong-Nujiang suture. Given the formation of adakites, narrow arc-suture distance, migration of the Jurassic frontal arc toward the continent interior, and other independent geological archives, we suggest that the hydrated forearc crust materials were removed from the overlying plate and carried into the mantle by subduction erosion. Our study provides the first direct magmatic evidence for a subduction erosion process in pre-Cenozoic convergent systems, which confirms an important role for such processes in subduction-zone material recycling.


2021 ◽  
Author(s):  
Yin Liu ◽  
W.J. Xiao ◽  
et al.

Sampling details (Table S1), zircon geochronological data (Table S2), geochemical data (Table S3), and a summary of zircon morphology and geochronology (Table S4) for Carboniferous-Triassic samples from the northern Qiangtang terrane. Geochemical data set of Carboniferous-Triassic magmatic rocks from the northern Qiangtang terrane (Table S5).


Sign in / Sign up

Export Citation Format

Share Document