scholarly journals Supplemental Material: Devonian to Triassic tectonic evolution and basin transition in the East Kunlun–Qaidam area, northern Tibetan Plateau: Constraints from stratigraphy and detrital zircon U–Pb geochronology

Author(s):  
Jiaopeng Sun ◽  
et al.

Table S1: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data of detrital zircons from Carboniferous and Permian sandstones from the East Kunlun–Qaidam area; Table S2: Compilation of detrital zircon U–Pb ages used for comparison in Figure 12 from the East Kunlun–Qaidam area and its vicinity.

2021 ◽  
Author(s):  
Jiaopeng Sun ◽  
et al.

Table S1: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data of detrital zircons from Carboniferous and Permian sandstones from the East Kunlun–Qaidam area; Table S2: Compilation of detrital zircon U–Pb ages used for comparison in Figure 12 from the East Kunlun–Qaidam area and its vicinity.


2021 ◽  
Author(s):  
Daniel Brennan ◽  
et al.

Individual sample detrital zircon results, alternative maximum depositional age calculations, conventional laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) methodology, rapid LA-ICP-MS methodology, sample locations, and detrital zircon U-Pb/Lu-Hf results for all analyses and compiled U-Pb data.<br>


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Sang-Gun No ◽  
Maeng-Eon Park

The Chungju rare-earth element (REE) deposit is located in the central part of the Okcheon Metamorphic Belt (OMB) in the Southern Korean Peninsula and research on REE mineralization in the Gyemyeongsan Formation has been continuous since the first report in 1989. The genesis of the REE mineralization that occurred in the Gyemyeongsan Formation has been reported by previous researchers; theories include the fractional crystallization of alkali magma, magmatic hydrothermal alteration, and recurrent mineralization during metamorphism. In the Gyemyeongsan Formation, we discovered an allanite-rich vein that displays the paragenetic relationship of quartz, allanite, and zircon, and we investigated the chemistry and chronology of zircon obtained from this vein. We analyzed the zircon’s chemistry with an electron probe X-ray micro analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The grain size of the zircon is as large as 50 µm and has an inherited core (up to 15 µm) and micrometer-sized sector zoning (up to several micrometers in size). In a previous study, the zircon ages were not obtained because the grain size was too small to analyze. In this study, we analyzed the zircon with laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) for dating purposes. The REE patterns and occurrence of zircon in the quartz–allanite vein match well with previous reported recrystallized zircon, while the behavior of the trace elements shows differences with magmatic and hydrothermal zircon. The 206Pb/238U ages obtained from the zircon in the quartz–allanite vein are from 240.1 ± 2.9 to 257.1 ± 3.5 Ma and this age is included in the tectonic evolution period of the study area. Therefore, we suggest that the quartz–allanite veins in the Gyemyeongsan Formation were formed during the late Permian to early Triassic metamorphic period and the zircon was recrystallized at that time. The Triassic age is the first reported age with zircon dating in the Gyemyeongsan Formation and will be an important data-point for the study of the tectonic evolution of the OMB.


2021 ◽  
Author(s):  
Daniel Brennan ◽  
et al.

Individual sample detrital zircon results, alternative maximum depositional age calculations, conventional laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) methodology, rapid LA-ICP-MS methodology, sample locations, and detrital zircon U-Pb/Lu-Hf results for all analyses and compiled U-Pb data.<br>


2021 ◽  
Author(s):  
Daniel Brennan ◽  
et al.

Individual sample detrital zircon results, alternative maximum depositional age calculations, conventional laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) methodology, rapid LA-ICP-MS methodology, sample locations, and detrital zircon U-Pb/Lu-Hf results for all analyses and compiled U-Pb data.<br>


2021 ◽  
Author(s):  
Daniel Brennan ◽  
et al.

Individual sample detrital zircon results, alternative maximum depositional age calculations, conventional laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) methodology, rapid LA-ICP-MS methodology, sample locations, and detrital zircon U-Pb/Lu-Hf results for all analyses and compiled U-Pb data.<br>


2015 ◽  
Vol 153 (3) ◽  
pp. 460-486 ◽  
Author(s):  
CLARISA VORSTER ◽  
JAN KRAMERS ◽  
NIC BEUKES ◽  
HERMAN VAN NIEKERK

AbstractThe Natal Group and Msikaba Formation remain relatively poorly understood with regards to their provenance and relative age of deposition; a much-needed geochronological study of the detrital zircons from these two units was therefore undertaken. Five samples of the Durban and Mariannhill Formations (Natal Group) and the Msikaba Formation (Cape Supergroup) were obtained. A total of 882 concordant U–Pb ages of detrital zircon populations from these units were determined by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Major Neoproterozoic and secondary Mesoproterozoic detrital zircon age populations are present in the detrital zircon content of all the samples. Smaller contributions from Archean-, Palaeoproterozoic-, Cambrian- and Ordovician-aged grains are also present. Due to the presence of a prominent major population of 800–1000 Ma zircons in all the samples, late Stenian – Tonian ancient volcanic arc complexes overprinted by Pan-African metamorphism of Mozambique, Malawi and Zambia, along with areas of similar age within Antarctica, India and Sri Lanka, are suggested as major sources of detritus. The Namaqua–Natal Metamorphic Complex is suggested as a possible source of minor late Mesoproterozoic-aged detritus. Minor populations of Archean and Palaeoproterozoic zircons were likely sourced from the Kaapvaal and Grunehogna Cratons. Post-orogenic Cambrian – Lower Ordovician granitoids of the Mozambique Belt (Mozambique) and the Maud Belt (Antarctica) made lesser contributions. In view of the apparent broad similarity of source areas for the Natal Group and Msikaba Formation, their sedimentation occurred in parts of the same large and evolving basin rather than localized in small continental basins, and the current exposures merely represent small erosional relicts.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document