Isotopic Composition and Concentration of Lead in Some Carbonate Rocks

2015 ◽  
pp. 105-114 ◽  
Author(s):  
J. M. Wampler ◽  
J. Laurence Kulp
Author(s):  
L. G. Vakulenko ◽  
◽  
O. D. Nikolenko ◽  
D. A. Novikov ◽  
P. A. Yan ◽  
...  

A comprehensive study of the composition of sand and silt deposits of the Yu1 horizon of the Vasyuganskaya Formation upper part of the Verkh-Tarskoye oil field has been carried out. Associations of authigenic minerals have been determined in their cement, among which the calcite is the most widespread. According to petrographic parameters, three generations of calcite have been identified for which detailed isotopicgeochemical and ultramicroscopic studies were carried out for the first time. Wide and multi directional changes in the isotopic composition of carbon and oxygen and in the chemical composition of carbonate minerals were recorded, they indicate significant variations in the conditions of diagenesis and catagenesis, primarily temperature, and different sources of CO2. Significant variations in the isotopic composition of formation waters and its relationship with the isotopic composition of carbonates have been established. Thus, a narrow interval of close δ13C values was revealed, amounting to –10.5 to –9.1 ‰ in the formation waters of group II, and from –10.7 to –9.1 ‰ in calcites of the third generation. The source of CO2 in this system should be considered a carbon dioxide, which is formed in the process of metamorphism of carbonate rocks of the Paleozoic age.


2010 ◽  
Vol 182 (4) ◽  
pp. 300-312 ◽  
Author(s):  
A.B. Kuznetsov ◽  
V.A. Melezhik ◽  
I.M. Gorokhov ◽  
N.N. Melnikov ◽  
G.V. Konstantinova ◽  
...  

Radiocarbon ◽  
2019 ◽  
Vol 61 (03) ◽  
pp. 799-815 ◽  
Author(s):  
Danuta Michalska ◽  
Jacek Pawlyta

ABSTRACTThis paper presents the results of radiocarbon (14C) dating of bulk mortars and reports an attempt of implementation of the knowledge about the isotopic fractionation, based on δ13C measurements, to make the age correction for mortars, together with verification of such correction based on the percentage estimation of carbonate components, namely binder and aggregate. To evaluate the variability of isotopic fractionation during CO2 absorption by mortar, dependent on the climatic and environmental conditions, and the type of mortar, the δ13C measurements have been performed for the mortars from Sussita (Golan Heights). Such measurements were also made for fragments of natural carbonate rocks and for mortars produced in the laboratory from the same substrate. We propose the recipe for mortars age estimation.


2020 ◽  
Author(s):  
Desiree Roerdink ◽  
Yuval Ronen ◽  
Harald Strauss ◽  
Paul Mason

Abstract Reconstructing the emergence and weathering of continental crust in the Archean is crucial for our understanding of early ocean chemistry, biosphere evolution and the onset of plate tectonics. However, considerable disagreement exists between the elemental and isotopic proxies that have been used to trace crustal input into marine sediments and data are scarce prior to 3 billion years ago. Here we show that chemical weathering modified the Sr isotopic composition of seawater as recorded in 3.52-3.20 Ga stratiform barite deposits from three different cratons. Using a combination of Sr, S and O isotope data, barite petrography and a hydrothermal mixing model, we calculate a novel Sr isotope evolution trend for Paleoarchean seawater that is much more radiogenic than the curve previously determined from carbonate rocks. Our findings require the presence and weathering of subaerial and evolved (high Rb/Sr) crust from 3.7 ± 0.1 Ga onwards. This Eoarchean onset of crustal weathering affected the chemistry of the oceans and supplied nutrients to the marine biosphere 500 million years earlier than previously thought.


2021 ◽  
Vol 62 (9) ◽  
pp. 1021-1035
Author(s):  
M.V. Rampilova ◽  
G.S. Ripp ◽  
M.O. Rampilov ◽  
B.B. Damdinov ◽  
L.B. Damdinova ◽  
...  

Abstract —The paper is concerned with a geochemical study of apoultrabasic metasomatites of the Ospa–Kitoi, Parama, and Ust’-Kelyana ophiolite massifs located in the southern folded framing of the Siberian craton. The isotope (O, C, H, Sr, and Rb) systems of dunites, serpentinites, nephrites, listvenites, and talc–carbonate rocks are studied. The isotopic composition of oxygen in olivines from dunites is characterized by δ18O = 4.6–5.5‰. The δ18O values of serpentinites (4.67–7.35‰) point to the mantle genesis of fluids and might have been inherited from ultrabasic rocks. Nephrites are slightly enriched in heavy oxygen isotope (δ18O = 6.13–9.54‰). This indicates that their fluid phase was transported from serpentinites and captured a small portion of the crustal component. The widest variations in δ18O values, from 8.12 to 17.46‰, are observed in minerals from listvenites. Carbonates from these rocks show a highly heterogeneous isotopic composition of oxygen (δ18O = 12.9–18.8‰) and carbon δ13C = –2.8 to +2.8‰). These rocks formed with the contribution of metamorphogenic fluids. According to the isotopic composition of hydrogen, the examined serpentinites are divided into two groups: with δD values specific to “magmatic water” (δD = –73.50 to –85.00‰) and those typical of meteoric fluids (δD = –151.90 to –167.20‰). The listvenites are characterized by low Rb and high Sr contents. Their 87Sr/86Sr values (0.70702–0.70971) indicate the contribution of a crustal source. The study of fluid inclusions in minerals from listvenites has shown that the rocks formed under relatively low-temperature conditions. The homogenization temperatures of fluid inclusions in quartz and magnesite from listvenites of the Ospa–Kitoi massif are 184–290 ºC and 122–182 ºC, respectively. In the Parama massif, the homogenization temperature of fluid inclusions in quartz is 130–170 ºC. The solutions that formed listvenites of the Ospa–Kitoi massif were slightly saline (TDS = 2.9–8.4 wt.% NaCl eq.), with NaCl and Na2CO3 being the main salt components.


2007 ◽  
Vol 414 (1) ◽  
pp. 599-604 ◽  
Author(s):  
A. B. Kuznetsov ◽  
M. T. Krupenin ◽  
I. M. Gorokhov ◽  
A. V. Maslov ◽  
G. V. Konstantinova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document